Kim Sewon, Bae Won C, Masuda Koichi, Chung Christine B, Hwang Dosik
School of Electrical Engineering, Yonsei University, Seoul 06974, Korea.
Department of Radiology, VA San Diego Healthcare System, San Diego, CA 92161-0114, USA.
Appl Sci (Basel). 2018 Sep;8(9). doi: 10.3390/app8091586. Epub 2018 Sep 7.
We propose a semi-automatic algorithm for the segmentation of vertebral bodies in magnetic resonance (MR) images of the human lumbar spine. Quantitative analysis of spine MR images often necessitate segmentation of the image into specific regions representing anatomic structures of interest. Existing algorithms for vertebral body segmentation require heavy inputs from the user, which is a disadvantage. For example, the user needs to define individual regions of interest (ROIs) for each vertebral body, and specify parameters for the segmentation algorithm. To overcome these drawbacks, we developed a semi-automatic algorithm that considerably reduces the need for user inputs. First, we simplified the ROI placement procedure by reducing the requirement to only one ROI, which includes a vertebral body; subsequently, a correlation algorithm is used to identify the remaining vertebral bodies and to automatically detect the ROIs. Second, the detected ROIs are adjusted to facilitate the subsequent segmentation process. Third, the segmentation is performed via graph-based and line-based segmentation algorithms. We tested our algorithm on sagittal MR images of the lumbar spine and achieved a 90% dice similarity coefficient, when compared with manual segmentation. Our new semi-automatic method significantly reduces the user's role while achieving good segmentation accuracy.
我们提出了一种用于在人类腰椎磁共振(MR)图像中分割椎体的半自动算法。脊柱MR图像的定量分析通常需要将图像分割成代表感兴趣解剖结构的特定区域。现有的椎体分割算法需要用户大量输入,这是一个缺点。例如,用户需要为每个椎体定义单独的感兴趣区域(ROI),并为分割算法指定参数。为克服这些缺点,我们开发了一种半自动算法,该算法大大减少了对用户输入的需求。首先,我们通过将要求减少到仅一个包含椎体的ROI来简化ROI放置过程;随后,使用相关算法识别其余椎体并自动检测ROI。其次,对检测到的ROI进行调整以促进后续分割过程。第三,通过基于图和基于线的分割算法进行分割。我们在腰椎矢状面MR图像上测试了我们的算法,与手动分割相比,获得了90%的骰子相似系数。我们新的半自动方法在实现良好分割精度的同时,显著减少了用户的作用。