Suppr超能文献

本征五边形缺陷对碳纳米材料电化学反应活性的影响。

Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials.

作者信息

Zhu Jiawei, Huang Yupeng, Mei Wencen, Zhao Chenyang, Zhang Chengtian, Zhang Jian, Amiinu Ibrahim Saana, Mu Shichun

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2019 Mar 18;58(12):3859-3864. doi: 10.1002/anie.201813805. Epub 2019 Feb 14.

Abstract

Theoretical calculations reveal that intrinsic pentagons in the basal plane can contribute to the local electronic redistribution and the contraction of band gap, making the carbon matrix possess superior binding affinity and electrochemical reactivity. To experimentally verify this, a pentagon-defect-rich carbon nanomaterial was constructed by means of in situ etching of fullerene molecules (C ). The electrochemical tests show that, relative to hexagons, such a carbon-based material with abundant intrinsic pentagon defects makes much greater contribution to the electrocatalytic oxygen reduction activity and electric double layer capacitance. It shows a four-electron-reaction mechanism similar to commercial Pt/C and other transition-metal-based catalysts, and a higher specific capacitance than many reported metal-free carbon materials. These results show the influence of intrinsic pentagon defects for developing carbon-based nanomaterials toward energy conversion and storage devices.

摘要

理论计算表明,基面中的本征五边形可促进局部电子重新分布和带隙收缩,使碳基体具有优异的结合亲和力和电化学反应活性。为了通过实验验证这一点,通过对富勒烯分子(C)进行原位蚀刻构建了一种富含五边形缺陷的碳纳米材料。电化学测试表明,相对于六边形,这种具有大量本征五边形缺陷的碳基材料对电催化氧还原活性和双电层电容的贡献要大得多。它显示出与商业Pt/C和其他过渡金属基催化剂类似的四电子反应机制,并且比许多已报道的无金属碳材料具有更高的比电容。这些结果表明了本征五边形缺陷对开发用于能量转换和存储设备的碳基纳米材料的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验