Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
Cell Syst. 2019 Jan 23;8(1):43-52.e5. doi: 10.1016/j.cels.2018.12.008. Epub 2019 Jan 9.
Single-cell gene expression reveals the diversity within a differentiated cell type. Often, cells of the same type show a continuum of gene-expression patterns. The origin of such continuum gene-expression patterns is unclear. To address this, we develop a theory to understand how a continuum provides division of labor in a tissue in which cells collectively contribute to several tasks. We find that a continuum is optimal when there are spatial gradients in the tissue that affect the performance in each task. The continuum is bounded inside a polyhedron whose vertices are expression profiles optimal at each task. We test this using single-cell gene expression for intestinal villi and liver hepatocytes, which form a curved 1D trajectory and a full 3D tetrahedron in gene-expression space, respectively. We infer the tasks for both cell types and characterize the spatial zonation of the task-specialist cells. This approach can be generally applied to other tissues.
单细胞基因表达揭示了分化细胞类型内的多样性。通常,相同类型的细胞表现出连续的基因表达模式。这种连续的基因表达模式的起源尚不清楚。为了解决这个问题,我们提出了一个理论来理解连续的基因表达模式如何在组织中提供分工,其中细胞共同为几个任务做出贡献。我们发现,当组织中存在影响每个任务表现的空间梯度时,连续的基因表达模式是最佳的。连续的基因表达模式被限制在一个多面体内部,该多面体的顶点是每个任务最优的表达谱。我们使用肠道绒毛和肝肝细胞的单细胞基因表达来测试这一点,它们分别在基因表达空间中形成一个弯曲的 1D 轨迹和一个完整的 3D 四面体。我们推断出这两种细胞类型的任务,并描述了任务专家细胞的空间分区。这种方法可以普遍应用于其他组织。