Suppr超能文献

Chrysalis:利用原型分析对空间转录组学中的组织隔室进行解码。

Chrysalis: decoding tissue compartments in spatial transcriptomics with archetypal analysis.

机构信息

Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.

Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.

出版信息

Commun Biol. 2024 Nov 16;7(1):1520. doi: 10.1038/s42003-024-07165-7.

Abstract

Dissecting tissue compartments in spatial transcriptomics (ST) remains challenging due to limited spatial resolution and dependence on single-cell reference data. We present Chrysalis, a computational method that rapidly uncovers tissue compartments through spatially variable gene (SVG) detection and archetypal analysis without requiring external reference data. Additionally, it offers a unique visualisation approach for swift tissue characterisation and provides access to the underlying gene expression signatures, enabling the identification of spatially and functionally distinct cellular niches. Chrysalis was evaluated through various benchmarks and validated against deconvolution, independently obtained cell type abundance data, and histopathological annotations, demonstrating superior performance compared to other algorithms on both in silico and real-world test examples. Furthermore, we showcased its versatility across different technologies, such as Visium, Visium HD, Slide-seq, and Stereo-seq.

摘要

由于空间转录组学(ST)的空间分辨率有限且依赖于单细胞参考数据,因此对组织隔室进行分析仍然具有挑战性。我们提出了 Chrysalis,这是一种计算方法,通过空间可变基因(SVG)检测和原型分析来快速揭示组织隔室,而无需外部参考数据。此外,它还提供了一种独特的可视化方法,可快速对组织进行特征描述,并提供对底层基因表达特征的访问,从而能够识别空间和功能上不同的细胞生态位。Chrysalis 通过各种基准进行了评估,并与去卷积、独立获得的细胞类型丰度数据和组织病理学注释进行了验证,结果表明它在模拟和真实测试示例上的性能均优于其他算法。此外,我们还展示了它在不同技术(如 Visium、Visium HD、Slide-seq 和 Stereo-seq)中的多功能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9c/11569261/b98a08dea3ef/42003_2024_7165_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验