Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany.
Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany.
Cell Syst. 2019 Jan 23;8(1):66-75.e8. doi: 10.1016/j.cels.2018.12.005. Epub 2019 Jan 9.
Microbes must ensure robust amino acid metabolism in the face of external and internal perturbations. This robustness is thought to emerge from regulatory interactions in metabolic and genetic networks. Here, we explored the consequences of removing allosteric feedback inhibition in seven amino acid biosynthesis pathways in Escherichia coli (arginine, histidine, tryptophan, leucine, isoleucine, threonine, and proline). Proteome data revealed that enzyme levels decreased in five of the seven dysregulated pathways. Despite that, flux through the dysregulated pathways was not limited, indicating that enzyme levels are higher than absolutely needed in wild-type cells. We showed that such enzyme overabundance renders the arginine, histidine, and tryptophan pathways robust against perturbations of gene expression, using a metabolic model and CRISPR interference experiments. The results suggested a sensitive interaction between allosteric feedback inhibition and enzyme-level regulation that ensures robust yet efficient biosynthesis of histidine, arginine, and tryptophan in E. coli.
微生物必须确保在面对外部和内部干扰时,氨基酸代谢具有稳健性。这种稳健性被认为源于代谢和遗传网络中的调控相互作用。在这里,我们研究了在大肠杆菌中去除七种氨基酸生物合成途径中的变构反馈抑制的后果(精氨酸、组氨酸、色氨酸、亮氨酸、异亮氨酸、苏氨酸和脯氨酸)。蛋白质组数据显示,在七个失调途径中,有五个途径的酶水平下降。尽管如此,失调途径中的通量并没有受到限制,这表明在野生型细胞中,酶水平高于绝对需要的水平。我们使用代谢模型和 CRISPR 干扰实验表明,这种酶的过剩使得精氨酸、组氨酸和色氨酸途径对基因表达的扰动具有稳健性。结果表明,变构反馈抑制和酶水平调节之间存在敏感的相互作用,确保了大肠杆菌中组氨酸、精氨酸和色氨酸的生物合成既稳健又高效。