Suppr超能文献

处理和解读胎盘基因组学数据时的注意事项。

Considerations when processing and interpreting genomics data of the placenta.

机构信息

BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.

出版信息

Placenta. 2019 Sep 1;84:57-62. doi: 10.1016/j.placenta.2019.01.006. Epub 2019 Jan 7.

Abstract

The application of genomic approaches to placental research has opened exciting new avenues to help us understand basic biological properties of the placenta, improve prenatal screening/diagnosis, and measure effects of in utero exposures on child health outcomes. In the last decade, such large-scale genomic data (including epigenomics and transcriptomics) have become more easily accessible to researchers from many disciplines due to the increasing ease of obtaining such data and the rapidly evolving computational tools available for analysis. While the potential of large-scale studies has been widely promoted, less attention has been given to some of the challenges associated with processing and interpreting such data. We hereby share some of our experiences in assessing data quality, reproducibility, and interpretation in the context of genome-wide studies of the placenta, with the aim to improve future studies. There is rarely a single "best" approach, as that can depend on the study question and sample cohort. However, being consistent, thoroughly assessing potential confounders in the data, and communicating key variables in the methods section of the manuscript are critically important to help researchers to collaborate and build on each other's work.

摘要

基因组方法在胎盘研究中的应用为我们提供了令人兴奋的新途径,帮助我们理解胎盘的基本生物学特性,改善产前筛查/诊断,并衡量宫内暴露对儿童健康结果的影响。在过去的十年中,由于获取此类数据变得更加容易,并且可用于分析的计算工具也在迅速发展,来自许多学科的研究人员更容易获得此类大规模基因组数据(包括表观基因组学和转录组学)。尽管大规模研究的潜力得到了广泛的推广,但对于处理和解释此类数据所涉及的一些挑战,关注较少。我们在此分享一些在评估胎盘全基因组研究中数据质量、可重复性和解释方面的经验,旨在改进未来的研究。很少有单一的“最佳”方法,因为这可能取决于研究问题和样本队列。然而,一致性、彻底评估数据中的潜在混杂因素,以及在稿件的方法部分传达关键变量,对于帮助研究人员合作和相互借鉴工作至关重要。

相似文献

1
Considerations when processing and interpreting genomics data of the placenta.
Placenta. 2019 Sep 1;84:57-62. doi: 10.1016/j.placenta.2019.01.006. Epub 2019 Jan 7.
2
Genetic and in utero environmental contributions to DNA methylation variation in placenta.
Hum Mol Genet. 2021 Oct 13;30(21):1968-1976. doi: 10.1093/hmg/ddab161.
3
Current approaches and developments in transcript profiling of the human placenta.
Hum Reprod Update. 2020 Nov 1;26(6):799-840. doi: 10.1093/humupd/dmaa028.
5
An integrative association method for omics data based on a modified Fisher's method with application to childhood asthma.
PLoS Genet. 2019 May 7;15(5):e1008142. doi: 10.1371/journal.pgen.1008142. eCollection 2019 May.
6
Genome-wide maps of distal gene regulatory enhancers active in the human placenta.
PLoS One. 2018 Dec 27;13(12):e0209611. doi: 10.1371/journal.pone.0209611. eCollection 2018.
7
Oncogenomic portals for the visualization and analysis of genome-wide cancer data.
Oncotarget. 2016 Jan 5;7(1):176-92. doi: 10.18632/oncotarget.6128.
8
A Bioinformatics Crash Course for Interpreting Genomics Data.
Chest. 2020 Jul;158(1S):S113-S123. doi: 10.1016/j.chest.2020.03.004.
9
Epigenetics and Preeclampsia: Defining Functional Epimutations in the Preeclamptic Placenta Related to the TGF-β Pathway.
PLoS One. 2015 Oct 28;10(10):e0141294. doi: 10.1371/journal.pone.0141294. eCollection 2015.
10
Improved reporting of DNA methylation data derived from studies of the human placenta.
Epigenetics. 2014 Mar;9(3):333-7. doi: 10.4161/epi.27648. Epub 2014 Jan 6.

引用本文的文献

1
Epigenome-wide association study of placental co-methylated regions in newborns for prenatal opioid exposure.
Environ Epigenet. 2025 Sep 4;11(1):dvaf021. doi: 10.1093/eep/dvaf021. eCollection 2025.
3
Impact of placental and peripheral blood DNA methylation on celiac disease susceptibility.
J Pediatr Gastroenterol Nutr. 2025 Sep;81(3):587-595. doi: 10.1002/jpn3.70124. Epub 2025 Jun 22.
7
The application of epiphenotyping approaches to DNA methylation array studies of the human placenta.
Epigenetics Chromatin. 2023 Oct 4;16(1):37. doi: 10.1186/s13072-023-00507-5.
8
The application of epiphenotyping approaches to DNA methylation array studies of the human placenta.
Res Sq. 2023 Jun 26:rs.3.rs-3069705. doi: 10.21203/rs.3.rs-3069705/v1.
9
Sequence-Based Platforms for Discovering Biomarkers in Liquid Biopsy of Non-Small-Cell Lung Cancer.
Cancers (Basel). 2023 Apr 13;15(8):2275. doi: 10.3390/cancers15082275.

本文引用的文献

1
A manifesto for reproducible science.
Nat Hum Behav. 2017 Jan 10;1(1):0021. doi: 10.1038/s41562-016-0021.
2
The clinical heterogeneity of preeclampsia is related to both placental gene expression and placental histopathology.
Am J Obstet Gynecol. 2018 Dec;219(6):604.e1-604.e25. doi: 10.1016/j.ajog.2018.09.036. Epub 2018 Sep 29.
3
Adjusting for Batch Effects in DNA Methylation Microarray Data, a Lesson Learned.
Front Genet. 2018 Mar 16;9:83. doi: 10.3389/fgene.2018.00083. eCollection 2018.
4
Epigenetic regulation of placental gene expression in transcriptional subtypes of preeclampsia.
Clin Epigenetics. 2018 Mar 2;10:28. doi: 10.1186/s13148-018-0463-6. eCollection 2018.
5
Agreement in DNA methylation levels from the Illumina 450K array across batches, tissues, and time.
Epigenetics. 2018;13(1):19-32. doi: 10.1080/15592294.2017.1411443. Epub 2018 Jan 30.
6
Statistical and integrative system-level analysis of DNA methylation data.
Nat Rev Genet. 2018 Mar;19(3):129-147. doi: 10.1038/nrg.2017.86. Epub 2017 Nov 13.
7
Mining DNA methylation alterations towards a classification of placental pathologies.
Hum Mol Genet. 2018 Jan 1;27(1):135-146. doi: 10.1093/hmg/ddx391.
8
Cell-type deconvolution from DNA methylation: a review of recent applications.
Hum Mol Genet. 2017 Oct 1;26(R2):R216-R224. doi: 10.1093/hmg/ddx275.
9
Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics.
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):E7786-E7795. doi: 10.1073/pnas.1710470114. Epub 2017 Aug 22.
10
Review: placental biomarkers for assessing fetal health.
Hum Mol Genet. 2017 Oct 1;26(R2):R237-R245. doi: 10.1093/hmg/ddx210.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验