文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

胎盘分割的重新定义:磁共振成像与超声成像深度学习整合的综述

Placenta segmentation redefined: review of deep learning integration of magnetic resonance imaging and ultrasound imaging.

作者信息

Jittou Asmaa, Fazazy Khalid El, Riffi Jamal

机构信息

Laboratory of Computer Science, Innovation, and Artificial Intelligence, Faculty of Science Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, 30000, Fes, Morocco.

出版信息

Vis Comput Ind Biomed Art. 2025 Jul 15;8(1):17. doi: 10.1186/s42492-025-00197-8.


DOI:10.1186/s42492-025-00197-8
PMID:40663247
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12263505/
Abstract

Placental segmentation is critical for the quantitative analysis of prenatal imaging applications. However, segmenting the placenta using magnetic resonance imaging (MRI) and ultrasound is challenging because of variations in fetal position, dynamic placental development, and image quality. Most segmentation methods define regions of interest with different shapes and intensities, encompassing the entire placenta or specific structures. Recently, deep learning has emerged as a key approach that offer high segmentation performance across diverse datasets. This review focuses on the recent advances in deep learning techniques for placental segmentation in medical imaging, specifically MRI and ultrasound modalities, and cover studies from 2019 to 2024. This review synthesizes recent research, expand knowledge in this innovative area, and highlight the potential of deep learning approaches to significantly enhance prenatal diagnostics. These findings emphasize the importance of selecting appropriate imaging modalities and model architectures tailored to specific clinical scenarios. In addition, integrating both MRI and ultrasound can enhance segmentation performance by leveraging complementary information. This review also discusses the challenges associated with the high costs and limited availability of advanced imaging technologies. It provides insights into the current state of placental segmentation techniques and their implications for improving maternal and fetal health outcomes, underscoring the transformative impact of deep learning on prenatal diagnostics.

摘要

胎盘分割对于产前影像应用的定量分析至关重要。然而,由于胎儿位置的变化、胎盘动态发育以及图像质量等因素,使用磁共振成像(MRI)和超声对胎盘进行分割具有挑战性。大多数分割方法通过定义具有不同形状和强度的感兴趣区域来涵盖整个胎盘或特定结构。最近,深度学习已成为一种关键方法,在各种数据集中都具有很高的分割性能。本综述聚焦于医学成像中胎盘分割的深度学习技术的最新进展,特别是MRI和超声模态,并涵盖2019年至2024年的研究。本综述综合了近期研究,拓展了这一创新领域的知识,并强调了深度学习方法在显著增强产前诊断方面的潜力。这些发现强调了选择适合特定临床场景的合适成像模态和模型架构的重要性。此外,整合MRI和超声可以通过利用互补信息来提高分割性能。本综述还讨论了与先进成像技术的高成本和有限可用性相关的挑战。它提供了对胎盘分割技术现状及其对改善母婴健康结果的影响的见解,强调了深度学习对产前诊断的变革性影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/1140aed1832b/42492_2025_197_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/2c2a28a37945/42492_2025_197_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/052b8daba80a/42492_2025_197_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/bad4350a75c3/42492_2025_197_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/9f5efee5a021/42492_2025_197_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/1140aed1832b/42492_2025_197_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/2c2a28a37945/42492_2025_197_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/052b8daba80a/42492_2025_197_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/bad4350a75c3/42492_2025_197_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/9f5efee5a021/42492_2025_197_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a165/12263505/1140aed1832b/42492_2025_197_Fig5_HTML.jpg

相似文献

[1]
Placenta segmentation redefined: review of deep learning integration of magnetic resonance imaging and ultrasound imaging.

Vis Comput Ind Biomed Art. 2025-7-15

[2]
Contrast-enhanced ultrasound using SonoVue® (sulphur hexafluoride microbubbles) compared with contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging for the characterisation of focal liver lesions and detection of liver metastases: a systematic review and cost-effectiveness analysis.

Health Technol Assess. 2013-4

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
Short-Term Memory Impairment

2025-1

[5]
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.

J Med Imaging (Bellingham). 2025-3

[6]
A novel UNet-SegNet and vision transformer architectures for efficient segmentation and classification in medical imaging.

Phys Eng Sci Med. 2025-7-8

[7]
The impact of uncertainty estimation on radiomic segmentation reproducibility and scan-rescan repeatability in kidney MRI.

Med Phys. 2025-7

[8]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[9]
Toward automated plantar pressure analysis: machine learning-based segmentation and key point detection across multicenter data.

Front Bioeng Biotechnol. 2025-6-19

[10]
Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res. 2025-1-29

本文引用的文献

[1]
Advanced magnetic resonance imaging in human placenta: insights into fetal growth restriction and congenital heart disease.

Front Cardiovasc Med. 2024-7-23

[2]
Patient-specific placental vessel segmentation with limited data.

J Robot Surg. 2024-6-4

[3]
Revealing the molecular landscape of human placenta: a systematic review and meta-analysis of single-cell RNA sequencing studies.

Hum Reprod Update. 2024-7-1

[4]
Segment anything model for medical image segmentation: Current applications and future directions.

Comput Biol Med. 2024-3

[5]
A novel MRI-based diagnostic model for predicting placenta accreta spectrum.

Magn Reson Imaging. 2024-6

[6]
Segment anything in medical images.

Nat Commun. 2024-1-22

[7]
Placental MRI segmentation based on multi-receptive field and mixed attention separation mechanism.

Comput Methods Programs Biomed. 2023-12

[8]
Addressing annotation and data scarcity when designing machine learning strategies for neurophotonics.

Neurophotonics. 2023-10

[9]
Segment anything model for medical image analysis: An experimental study.

Med Image Anal. 2023-10

[10]
Artificial intelligence in obstetric ultrasound: A scoping review.

Prenat Diagn. 2023-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索