Suppr超能文献

通过高压下的自旋极化注入增强界面工程自旋 OLED 的发光。

Enhancing Light Emission in Interface Engineered Spin-OLEDs through Spin-Polarized Injection at High Voltages.

机构信息

Instituto de Ciencia Molecular (ICMol), Universidad de Valencia. Catedrático José Beltrán 2, 46890, Paterna, Spain.

Instituto per lo Studio dei Materiali Nanostrutturati ISMN - CNR, Via Gobetti, 101, Bologna, 40129, Italy.

出版信息

Adv Mater. 2019 Mar;31(10):e1806817. doi: 10.1002/adma.201806817. Epub 2019 Jan 15.

Abstract

The quest for a spin-polarized organic light-emitting diode (spin-OLED) is a common goal in the emerging fields of molecular electronics and spintronics. In this device, two ferromagnetic (FM) electrodes are used to enhance the electroluminescence intensity of the OLED through a magnetic control of the spin polarization of the injected carriers. The major difficulty is that the driving voltage of an OLED device exceeds a few volts, while spin injection in organic materials is only efficient at low voltages. The fabrication of a spin-OLED that uses a conjugated polymer as bipolar spin collector layer and ferromagnetic electrodes is reported here. Through a careful engineering of the organic/inorganic interfaces, it is succeeded in obtaining a light-emitting device showing spin-valve effects at high voltages (up to 14 V). This allows the detection of a magneto-electroluminescence (MEL) enhancement on the order of a 2.4% at 9 V for the antiparallel (AP) configuration of the magnetic electrodes. This observation provides evidence for the long-standing fundamental issue of injecting spins from magnetic electrodes into the frontier levels of a molecular semiconductor. The finding opens the way for the design of multifunctional devices coupling the light and the spin degrees of freedom.

摘要

寻求具有自旋极化的有机发光二极管(spin-OLED)是分子电子学和自旋电子学这两个新兴领域的共同目标。在这个器件中,两个铁磁(FM)电极通过控制注入载流子的自旋极化来增强 OLED 的电致发光强度。主要的困难在于 OLED 器件的驱动电压超过几伏特,而有机材料中的自旋注入仅在低电压下有效。本文报道了一种使用共轭聚合物作为双极自旋收集层和铁磁电极的 spin-OLED 的制备。通过对有机/无机界面的精心设计,成功获得了在高电压(高达 14 V)下显示自旋阀效应的发光器件。这允许在磁电极的反平行(AP)配置下,在 9 V 时检测到约 2.4%的磁电致发光(MEL)增强。这一观察结果为从磁性电极向分子半导体的前沿能级注入自旋这一长期存在的基本问题提供了证据。这一发现为设计将光和自旋自由度相结合的多功能器件开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验