Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA.
Science. 2021 Mar 12;371(6534):1129-1133. doi: 10.1126/science.abf5291.
In traditional optoelectronic approaches, control over spin, charge, and light requires the use of both electrical and magnetic fields. In a spin-polarized light-emitting diode (spin-LED), charges are injected, and circularly polarized light is emitted from spin-polarized carrier pairs. Typically, the injection of carriers occurs with the application of an electric field, whereas spin polarization can be achieved using an applied magnetic field or polarized ferromagnetic contacts. We used chiral-induced spin selectivity (CISS) to produce spin-polarized carriers and demonstrate a spin-LED that operates at room temperature without magnetic fields or ferromagnetic contacts. The CISS layer consists of oriented, self-assembled small chiral molecules within a layered organic-inorganic metal-halide hybrid semiconductor framework. The spin-LED achieves ±2.6% circularly polarized electroluminescence at room temperature.
在传统的光电方法中,对自旋、电荷和光的控制需要同时使用电场和磁场。在自旋发光二极管(spin-LED)中,电荷被注入,并且自旋极化载流子对发射圆偏振光。通常,载流子的注入是通过施加电场来实现的,而自旋极化可以通过施加磁场或极化铁磁接触来实现。我们使用手性诱导自旋选择(CISS)来产生自旋极化载流子,并展示了一种无需磁场或铁磁接触即可在室温下工作的 spin-LED。CISS 层由取向的、自组装的小分子组成,位于层状有机-无机金属卤化物混合半导体框架内。spin-LED 在室温下实现了±2.6%的圆偏振电致发光。