Suppr超能文献

KSIMC:基于矩阵补全的激酶-底物相互作用预测。

KSIMC: Predicting Kinase⁻Substrate Interactions Based on Matrix Completion.

机构信息

School of Computer Science and Engineering, Yulin Normal University, Yulin 537000, China.

School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China.

出版信息

Int J Mol Sci. 2019 Jan 14;20(2):302. doi: 10.3390/ijms20020302.

Abstract

Protein phosphorylation is an important chemical modification catalyzed by kinases. It plays important roles in many cellular processes. Predicting kinase⁻substrate interactions is vital to understanding the mechanism of many diseases. Many computational methods have been proposed to identify kinase⁻substrate interactions. However, the prediction accuracy still needs to be improved. Therefore, it is necessary to develop an efficient computational method to predict kinase⁻substrate interactions. In this paper, we propose a novel computational approach, KSIMC, to identify kinase⁻substrate interactions based on matrix completion. Firstly, the kinase similarity and substrate similarity are calculated by aligning sequence of kinase⁻kinase and substrate⁻substrate, respectively. Then, the original association network is adjusted based on the similarities. Finally, the matrix completion is used to predict potential kinase⁻substrate interactions. The experiment results show that our method outperforms other state-of-the-art algorithms in performance. Furthermore, the relevant databases and scientific literature verify the effectiveness of our algorithm for new kinase⁻substrate interaction identification.

摘要

蛋白质磷酸化是由激酶催化的一种重要的化学修饰。它在许多细胞过程中起着重要作用。预测激酶-底物相互作用对于理解许多疾病的机制至关重要。已经提出了许多计算方法来识别激酶-底物相互作用。然而,预测准确性仍有待提高。因此,有必要开发一种有效的计算方法来预测激酶-底物相互作用。在本文中,我们提出了一种新的计算方法 KSIMC,基于矩阵补全来识别激酶-底物相互作用。首先,通过对齐激酶-激酶和底物-底物的序列来计算激酶相似性和底物相似性。然后,根据相似性调整原始关联网络。最后,使用矩阵补全来预测潜在的激酶-底物相互作用。实验结果表明,我们的方法在性能上优于其他最先进的算法。此外,相关数据库和科学文献验证了我们的算法在新的激酶-底物相互作用识别方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e55/6358935/66e998374ed6/ijms-20-00302-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验