Suppr超能文献

磷酸化预测:一种通过整合异构特征选择来预测人类激酶特异性磷酸化底物和位点的生物信息学工具。

PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection.

机构信息

Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.

Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia.

出版信息

Sci Rep. 2017 Jul 31;7(1):6862. doi: 10.1038/s41598-017-07199-4.

Abstract

Protein phosphorylation is a major form of post-translational modification (PTM) that regulates diverse cellular processes. In silico methods for phosphorylation site prediction can provide a useful and complementary strategy for complete phosphoproteome annotation. Here, we present a novel bioinformatics tool, PhosphoPredict, that combines protein sequence and functional features to predict kinase-specific substrates and their associated phosphorylation sites for 12 human kinases and kinase families, including ATM, CDKs, GSK-3, MAPKs, PKA, PKB, PKC, and SRC. To elucidate critical determinants, we identified feature subsets that were most informative and relevant for predicting substrate specificity for each individual kinase family. Extensive benchmarking experiments based on both five-fold cross-validation and independent tests indicated that the performance of PhosphoPredict is competitive with that of several other popular prediction tools, including KinasePhos, PPSP, GPS, and Musite. We found that combining protein functional and sequence features significantly improves phosphorylation site prediction performance across all kinases. Application of PhosphoPredict to the entire human proteome identified 150 to 800 potential phosphorylation substrates for each of the 12 kinases or kinase families. PhosphoPredict significantly extends the bioinformatics portfolio for kinase function analysis and will facilitate high-throughput identification of kinase-specific phosphorylation sites, thereby contributing to both basic and translational research programs.

摘要

蛋白质磷酸化是一种主要的翻译后修饰(PTM)形式,调节多种细胞过程。磷酸化位点预测的计算方法为完整的磷酸蛋白质组注释提供了一种有用且互补的策略。在这里,我们提出了一种新的生物信息学工具 PhosphoPredict,该工具结合了蛋白质序列和功能特征,可预测 12 种人类激酶和激酶家族(包括 ATM、CDKs、GSK-3、MAPKs、PKA、PKB、PKC 和 SRC)的特定激酶底物及其相关磷酸化位点。为了阐明关键决定因素,我们确定了对于预测每个特定激酶家族的底物特异性最具信息量和相关性的特征子集。基于五重交叉验证和独立测试的广泛基准测试实验表明,PhosphoPredict 的性能可与其他几种流行的预测工具(包括 KinasePhos、PPSP、GPS 和 Musite)相媲美。我们发现,组合蛋白质功能和序列特征可显著提高所有激酶的磷酸化位点预测性能。将 PhosphoPredict 应用于整个人类蛋白质组,可确定 12 种激酶或激酶家族中的每一种激酶的潜在磷酸化底物数量为 150 至 800 个。PhosphoPredict 极大地扩展了激酶功能分析的生物信息学组合,并将有助于高通量鉴定激酶特异性磷酸化位点,从而为基础和转化研究计划做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/257e/5537252/faa38a3a90ed/41598_2017_7199_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验