Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
J Chem Phys. 2019 Jan 14;150(2):024107. doi: 10.1063/1.5063385.
A new parameterization for density functional tight binding (DFTB) theory, 31, has been developed for molecules containing carbon, hydrogen, nitrogen, and oxygen. Optimal values for the Hubbard s, on-site energies, and the radial dependences of the bond integrals and repulsive potentials were determined by numerical optimization using simulated annealing to a modest database of -calculated atomization energies and interatomic forces. The transferability of the optimized DFTB parameterization has been assessed using the CHNO subset of the QM-9 database [R. Ramakrishnan , Sci. Data , 140022 (2014)]. These analyses showed that the errors in the atomization energies and interatomic forces predicted by our model are small and in the vicinity of the differences between density functional theory calculations with different basis sets and exchange-correlation functionals. Good correlations between the molecular dipole moments and HOMO-LUMO gaps predicted by 31 and the QM-9 data set are also found. Furthermore, the errors in the atomization energies and forces derived from 31 are significantly smaller than those obtained from the ReaxFF-g reactive force field for organic materials [L. Liu , J. Phys. Chem. A , 11016 (2011)]. The 31 DFTB parameterization for C, H, N, and O has been applied to the molecular dynamics simulation of the principal Hugoniot of liquid nitromethane, liquid benzene, liquid nitrogen, pentaerythritol tetranitrate, trinitrotoluene, and cyclotetramethylene tetranitramine. The computed and measured Hugoniot loci are in excellent agreement with experiment, and we discuss the sensitivity of the loci to the underestimated shock heating that is a characteristic of classical molecular dynamics simulations.
一种新的密度泛函紧束缚(DFTB)理论参数化方法 31 已经被开发出来,用于包含碳、氢、氮和氧的分子。通过使用模拟退火对 -计算的原子化能和原子间力的适度数据库进行数值优化,确定了 Hubbard s、局域能量以及键积分和排斥势的径向依赖性的最佳值。通过使用 QM-9 数据库的 CHNO 子集 [R. Ramakrishnan, Sci. Data, 140022 (2014)] 评估了优化的 DFTB 参数化的可转移性。这些分析表明,我们模型预测的原子化能和原子间力的误差很小,并且接近具有不同基组和交换相关泛函的密度泛函理论计算之间的差异。还发现 31 和 QM-9 数据集预测的分子偶极矩和 HOMO-LUMO 间隙之间存在良好的相关性。此外,从 31 得出的原子化能和力的误差明显小于有机材料 ReaxFF-g 反应力场的误差 [L. Liu, J. Phys. Chem. A, 11016 (2011)]。C、H、N 和 O 的 31 DFTB 参数化已应用于液态硝基甲烷、液态苯、液态氮、季戊四醇四硝酸酯、三硝基甲苯和环四亚甲基四硝胺的主要 HUGONIOT 分子动力学模拟。计算和测量的 HUGONIOT 轨迹与实验非常吻合,我们讨论了轨迹对经典分子动力学模拟中特征的低估冲击加热的敏感性。