Suppr超能文献

使用动态对比增强磁共振成像(DCE-MRI)栖息地描述符预测具有临床意义的前列腺癌。

Predicting clinically significant prostate cancer using DCE-MRI habitat descriptors.

作者信息

Parra N Andres, Lu Hong, Li Qian, Stoyanova Radka, Pollack Alan, Punnen Sanoj, Choi Jung, Abdalah Mahmoud, Lopez Christopher, Gage Kenneth, Park Jong Y, Kosj Yamoah, Pow-Sang Julio M, Gillies Robert J, Balagurunathan Yoganand

机构信息

Department of Cancer Physiology, H.L. Moffitt Cancer Center, Tampa, FL, USA.

Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

出版信息

Oncotarget. 2018 Dec 14;9(98):37125-37136. doi: 10.18632/oncotarget.26437.

Abstract

Prostate cancer diagnosis and treatment continues to be a major public health challenge. The heterogeneity of the disease is one of the major factors leading to imprecise diagnosis and suboptimal disease management. The improved resolution of functional multi-parametric magnetic resonance imaging (mpMRI) has shown promise to improve detection and characterization of the disease. Regions that subdivide the tumor based on Dynamic Contrast Enhancement (DCE) of mpMRI are referred to as in this study. The DCE defined perfusion curve patterns on the identified tumor habitat region are used to assess clinical significance. These perfusion curves were systematically quantified using seven features in association with the patient biopsy outcome and classifier models were built to find the best discriminating characteristics between clinically significant and insignificant prostate lesions defined by Gleason score (GS). Multivariable analysis was performed independently on one institution and validated on the other, using a multi-parametric feature model, based on DCE characteristics and ADC features. The models had an intra institution Area under the Receiver Operating Characteristic (AUC) of 0.82. Trained on Institution I and validated on the cohort from Institution II, the AUC was also 0.82 (sensitivity 0.68, specificity 0.95).

摘要

前列腺癌的诊断和治疗仍然是一项重大的公共卫生挑战。该疾病的异质性是导致诊断不准确和疾病管理欠佳的主要因素之一。功能多参数磁共振成像(mpMRI)分辨率的提高已显示出改善该疾病检测和特征描述的前景。在本研究中,基于mpMRI动态对比增强(DCE)对肿瘤进行细分的区域被称为 。在已识别的肿瘤栖息地区域上,由DCE定义的灌注曲线模式用于评估临床意义。利用与患者活检结果相关的七个特征对这些灌注曲线进行系统量化,并建立分类器模型以找出由 Gleason 评分(GS)定义的临床显著和不显著前列腺病变之间的最佳区分特征。使用基于DCE特征和ADC特征的多参数特征模型,在一个机构独立进行多变量分析,并在另一个机构进行验证。这些模型在机构内部的受试者工作特征曲线下面积(AUC)为0.82。在机构I进行训练并在机构II的队列中进行验证时,AUC也为0.82(敏感性0.68,特异性0.95)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9df/6324677/ce11b66e7918/oncotarget-09-37125-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验