School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
J Food Drug Anal. 2019 Jan;27(1):145-153. doi: 10.1016/j.jfda.2018.06.004. Epub 2018 Jul 4.
Pesticide residue in food is of grave concern in recent years. In this paper, a rapid, sensitive, SERS (Surface-enhanced Raman scattering) active reduced-graphene-oxide-gold-nano-star (rGO-NS) nano-composite nanosensor was developed for the detection of acetamiprid (AC) residue in green tea. Different concentrations of AC combined with rGO-NS nano-composite electro-statically, yielded a strong SERS signal linearly with increasing concentration of AC ranging from 1.0 × 10 to 1.0 × 10 μg/mL indicating the potential of rGO-NS nano-composite to detect AC in green tea. Genetic algorithm-partial least squares regression (GA-PLS) algorithm was used to develop a quantitative model for AC residue prediction. The GA-PLS model achieved a correlation coefficient (Rc) of 0.9772 and recovery of the real sample of 97.06%-115.88% and RSD of 5.98% using the developed method. The overall results demonstrated that Raman spectroscopy combined with SERS active rGO-NS nano-composite could be utilized to determine AC residue in green tea to achieve quality and safety.
近年来,食品中的农药残留问题引起了极大关注。本文开发了一种快速、灵敏的表面增强拉曼散射(SERS)活性还原氧化石墨烯-金纳米星(rGO-NS)纳米复合材料纳米传感器,用于检测绿茶中的吡虫啉(AC)残留。不同浓度的 AC 与 rGO-NS 纳米复合材料静电结合,产生了一个强的 SERS 信号,与 AC 的浓度呈线性增加,范围从 1.0×10 到 1.0×10 μg/mL,表明 rGO-NS 纳米复合材料具有检测绿茶中 AC 的潜力。遗传算法-偏最小二乘回归(GA-PLS)算法被用于开发 AC 残留预测的定量模型。GA-PLS 模型使用所开发的方法实现了 0.9772 的相关系数(Rc),实际样品的回收率为 97.06%-115.88%,相对标准偏差(RSD)为 5.98%。总的来说,结果表明,拉曼光谱结合 SERS 活性 rGO-NS 纳米复合材料可用于测定绿茶中的 AC 残留,以实现质量和安全。