Suppr超能文献

基于网络的细胞穿透肽预测工具的实证比较和分析。

Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools.

机构信息

College of Intelligence and Computing, Tianjin University, Tianjin, China.

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Brief Bioinform. 2020 Mar 23;21(2):408-420. doi: 10.1093/bib/bby124.

Abstract

Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20-25 residues long than peptides in other length ranges.

摘要

细胞穿透肽(CPPs)促进治疗相关分子(包括 DNA、蛋白质和寡核苷酸)在体外和体内进入细胞。这种独特的能力探索了 CPPs 作为治疗性递药的可能性及其在临床治疗中的潜在应用。在过去的几十年中,已经开发出许多基于机器学习(ML)的预测工具,其中一些作为网络门户免费提供。然而,各种工具产生的预测结果难以量化和比较。特别是,在性能方面,没有对基于网络的预测工具进行系统比较,特别是在实际应用中。在这项工作中,我们全面回顾了 CPP 的生物学重要性、CPP 数据库和现有的基于 ML 的 CPP 预测方法。为了评估当前的预测工具,我们进行了一项比较研究,分析了来自 6 个公开 CPP 预测工具的总共 12 个模型在 2 个 CPP 和非 CPP 的基准验证集上的性能。我们的基准测试结果表明,与其他 11 个预测模型相比,来自 KELM-CPPpred 的模型 KELM-hybrid-AAC 在整体性能方面表现出显著提高。此外,通过长度依赖性分析,我们发现现有的预测工具往往更准确地预测长度为 20-25 个残基的 CPPs 和非 CPPs,而不是其他长度范围内的肽。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验