Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan.
Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
Plant Cell Physiol. 2019 Apr 1;60(4):875-887. doi: 10.1093/pcp/pcz002.
A variety of cellular metabolic reactions generate inorganic pyrophosphate (PPi) as an ATP hydrolysis byproduct. The vacuolar H+-translocating pyrophosphatase (H+-PPase) loss-of-function fugu5 mutant is susceptible to drought and displays pleotropic postgerminative growth defects due to excess PPi. It was recently reported that stomatal closure after abscisic acid (ABA) treatment is delayed in vhp1-1, a fugu5 allele. In contrast, we found that specific removal of PPi rescued all of the above fugu5 developmental and growth defects. Hence, we speculated that excess PPi itself, rather than vacuolar acidification, might delay stomatal closure. To test this hypothesis, we constructed transgenic plants expressing the yeast IPP1 gene (encoding a cytosolic pyrophosphatase) driven by a guard cell-specific promoter (pGC1::IPP1) in the fugu5 background. Our measurements confirmed stomatal closure defects in fugu5, further supporting a role for H+-PPase in stomatal functioning. Importantly, while pGC1::IPP1 transgenics morphologically mimicked fugu5, stomatal closure was restored in response to ABA and darkness. Quantification of water loss revealed that fugu5 stomata were almost completely insensitive to ABA. In addition, growth of pGC1::IPP1 plants was promoted compared to fugu5 throughout their life; however, it did not reach the wild type level. fugu5 also displayed an increased stomatal index, in violation of the one-cell-spacing rule, and phenotypes recovered upon removal of PPi by pAVP1::IPP1 (FUGU5, VHP1 and AVP1 are the same gene encoding H+-PPase), but not in the pGC1::IPP1 line. Taken together, these results clearly support our hypothesis that dysfunction in stomata is triggered by excess PPi within guard cells, probably via perturbed guard cell metabolism.
多种细胞代谢反应产生无机焦磷酸(PPi)作为 ATP 水解的副产物。液泡 H+-转运焦磷酸酶(H+-PPase)功能丧失的 fugu5 突变体对干旱敏感,并由于过量的 PPi 而表现出多效性的萌发后生长缺陷。最近有报道称,ABA 处理后气孔关闭在 vhp1-1(fugu5 的等位基因)中被延迟。相比之下,我们发现 PPi 的特异性去除挽救了所有上述 fugu5 的发育和生长缺陷。因此,我们推测过量的 PPi 本身,而不是液泡酸化,可能会延迟气孔关闭。为了验证这一假设,我们构建了在 fugu5 背景下表达酵母 IPP1 基因(编码一种细胞质焦磷酸酶)的转基因植物,该基因由保卫细胞特异性启动子(pGC1::IPP1)驱动。我们的测量结果证实了 fugu5 中的气孔关闭缺陷,进一步支持 H+-PPase 在气孔功能中的作用。重要的是,虽然 pGC1::IPP1 转基因在形态上模拟了 fugu5,但气孔在 ABA 和黑暗的刺激下关闭。水分损失的定量分析表明,fugu5 的气孔对 ABA 几乎完全不敏感。此外,与 fugu5 相比,pGC1::IPP1 植物的生长在其整个生命周期中都得到了促进;然而,它没有达到野生型水平。fugu5 还表现出气孔指数增加,违反了一个细胞间距的规则,并且在通过 pAVP1::IPP1(FUGU5、VHP1 和 AVP1 是编码 H+-PPase 的相同基因)去除 PPi 后恢复,但在 pGC1::IPP1 系中没有恢复。总之,这些结果清楚地支持了我们的假设,即气孔功能障碍是由保卫细胞内过量的 PPi 触发的,可能是通过扰乱保卫细胞代谢引起的。