Suppr超能文献

过量的焦磷酸盐会抑制铺路细胞形态发生并改变器官平整度。

Excess Pyrophosphate Restrains Pavement Cell Morphogenesis and Alters Organ Flatness in .

作者信息

Gunji Shizuka, Oda Yoshihisa, Takigawa-Imamura Hisako, Tsukaya Hirokazu, Ferjani Ali

机构信息

United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan.

Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.

出版信息

Front Plant Sci. 2020 Feb 21;11:31. doi: 10.3389/fpls.2020.00031. eCollection 2020.

Abstract

In , the vacuolar proton-pumping pyrophosphatase (H-PPase) is highly expressed in young tissues, which consume large amounts of energy in the form of nucleoside triphosphates and produce pyrophosphate (PPi) as a byproduct. We reported that excess PPi in the H-PPase loss-of-function mutant severely compromised gluconeogenesis from seed storage lipids, arrested cell division in cotyledonary palisade tissue, and triggered compensated cell enlargement; this phenotype was recovered upon sucrose supply. Thus, we provided evidence that the hydrolysis of inhibitory PPi, rather than vacuolar acidification, is the major contribution of H-PPase during seedling establishment. Here, examination of the epidermis revealed that pavement cells exhibited defective puzzle-cell formation. Importantly, removal of PPi from background by the yeast cytosolic PPase IPP1, in transgenic lines, restored the phenotypic aberrations of pavement cells. Surprisingly, pavement cells in mutants with defects in gluconeogenesis () or the glyoxylate cycle (; ) showed no phenotypic alteration, indicating that reduced sucrose production from seed storage lipids is not the cause of epidermal phenotype. had oblong cotyledons similar to those of (), whose leaf pavement cells display an abnormal arrangement of cortical microtubules (MTs). To gain insight into the genetic interaction between ANGUSTIFOLIA and H-PPase in pavement cell differentiation, was analyzed. Surprisingly, epidermis developmental defects were synergistically enhanced in the double mutant. In fact, pavement cells showed a striking three-dimensional growth phenotype on both abaxial and adaxial sides of cotyledons, which was recovered by hydrolysis of PPi in . Live imaging revealed that cortical MTs exhibited a reduced velocity, were slightly fragmented and sparse in the above lines compared to the WT. Consistently, addition of PPi led to a dose-dependent delay of tubulin polymerization, thus supporting a link between PPi and MT dynamics. Moreover, mathematical simulation of three-dimensional growth based on cotyledon proximo-distal and medio-lateral phenotypic quantification implicated restricted cotyledon expansion along the medio-lateral axis in the crinkled surface of . Together, our data suggest that PPi homeostasis is a prerequisite for proper pavement cell morphogenesis, epidermal growth and development, and organ flattening.

摘要

在[具体植物]中,液泡质子泵焦磷酸酶(H-PPase)在幼嫩组织中高度表达,这些组织以核苷三磷酸的形式消耗大量能量,并产生焦磷酸(PPi)作为副产物。我们报道,H-PPase功能缺失突变体中过量的PPi严重损害了种子储存脂质的糖异生作用,使子叶栅栏组织中的细胞分裂停滞,并引发补偿性细胞增大;蔗糖供应后该表型得以恢复。因此,我们提供了证据表明,抑制性PPi的水解而非液泡酸化是H-PPase在幼苗建立过程中的主要作用。在此,对表皮的检查发现,铺板细胞呈现出缺陷性的拼图细胞形成。重要的是,在[具体植物]转基因系中,通过酵母胞质PPase IPP1从[具体植物]背景中去除PPi,恢复了铺板细胞的表型异常。令人惊讶的是,糖异生作用缺陷([具体突变体1])或乙醛酸循环缺陷([具体突变体2];[具体突变体3])的突变体中的铺板细胞没有表型改变,这表明种子储存脂质产生的蔗糖减少不是[具体植物]表皮表型的原因。[具体植物]具有与[另一植物]([具体植物名称2])相似的长圆形子叶,其叶片铺板细胞显示皮层微管(MTs)排列异常。为了深入了解ANGUSTIFOLIA和H-PPase在铺板细胞分化中的遗传相互作用,对[具体双突变体]进行了分析。令人惊讶的是,双突变体中表皮发育缺陷协同增强。事实上,[具体植物]铺板细胞在子叶的远轴面和近轴面均表现出显著的三维生长表型,而在[具体植物]中通过PPi水解可恢复该表型。实时成像显示,与野生型相比,上述品系中的皮层微管速度降低、略有片段化且稀疏。一致地,添加PPi导致微管蛋白聚合呈剂量依赖性延迟,从而支持了PPi与MT动态之间的联系。此外,基于子叶近-远轴和中-侧轴表型定量的三维生长数学模拟表明,[具体植物]皱缩表面沿中-侧轴的子叶扩展受限。总之,我们的数据表明,PPi稳态是铺板细胞正常形态发生、表皮生长发育和器官扁平化的先决条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验