Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency's (CalEPA's), Oakland, California.
Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency's (CalEPA's), Sacramento, California.
Toxicol Sci. 2019 May 1;169(1):14-24. doi: 10.1093/toxsci/kfz017.
We developed an integrated, modular approach to predicting chemical toxicity relying on in vitro assay data, linkage of molecular targets to disease categories, and software for ranking chemical activity and examining structural features (chemotypes). We evaluate our approach in a proof-of-concept exercise to identify and prioritize chemicals of potential carcinogenicity concern. We identified 137 cancer pathway-related assays from a subset of U.S. EPA's ToxCast platforms. We mapped these assays to key characteristics of carcinogens and found they collectively assess 5 of 10 characteristics. We ranked all 1061 chemicals screened in Phases I and II of ToxCast by their activity in the selected cancer pathway-related assays using Toxicological Prioritization Index software. More chemicals used as biologically active agents (eg, pharmaceuticals) ranked in the upper 50% versus lower 50%. Twenty-three chemotypes are enriched in the top 5% (n = 54) of chemicals; these features may be important for their activity in cancer pathway-related assays. The biological coverage of the ToxCast assays related to cancer pathways is limited and short-term assays may not capture the biology of some key characteristics. Metabolism is also minimal in the assays. The ability of our approach to identify chemicals with cancer hazard is limited with the current input data, but we expect that our approach can be applied with future iterations of ToxCast and other data for improved chemical prioritization and characterization. The novel approach and proof-of-concept exercise described here for ranking chemicals for potential carcinogenicity concern is modular, adaptable, and amenable to evolving data streams.
我们开发了一种综合的、模块化的方法,依赖于体外检测数据、分子靶标与疾病类别之间的联系以及用于对化学活性进行排序和检查结构特征(化学型)的软件,来预测化学毒性。我们在概念验证练习中评估了我们的方法,以识别和优先考虑潜在致癌性关注的化学物质。我们从美国环保署的 ToxCast 平台的一个子集确定了 137 个与癌症途径相关的检测方法。我们将这些检测方法映射到致癌物的关键特征上,发现它们共同评估了 10 个特征中的 5 个。我们使用毒性优先级指数软件,根据所选癌症途径相关检测方法中化学物质的活性,对 ToxCast 第 I 阶段和第 II 阶段筛选的所有 1061 种化学物质进行排名。更多用作生物活性剂(如药物)的化学物质排名在前 50%。23 种化学型在化学物质的前 5%(n=54)中富集;这些特征可能与其在癌症途径相关检测中的活性有关。与癌症途径相关的 ToxCast 检测的生物学覆盖范围有限,短期检测可能无法捕捉某些关键特征的生物学特性。检测中也很少涉及代谢。我们的方法识别具有癌症危害的化学物质的能力受到当前输入数据的限制,但我们期望我们的方法可以应用于未来的 ToxCast 迭代和其他数据,以提高化学物质的优先级和特征描述。本文描述的用于对潜在致癌性关注的化学物质进行排序的新型方法和概念验证练习是模块化的、可适应的,并且适用于不断发展的数据流。