School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona 85287
School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona 85287.
Genetics. 2019 Mar;211(3):1019-1028. doi: 10.1534/genetics.118.301684. Epub 2019 Jan 16.
The recent increase in time-series population genomic data from experimental, natural, and ancient populations has been accompanied by a promising growth in methodologies for inferring demographic and selective parameters from such data. However, these methods have largely presumed that the populations of interest are well-described by the Kingman coalescent. In reality, many groups of organisms, including viruses, marine organisms, and some plants, protists, and fungi, typified by high variance in progeny number, may be best characterized by multiple-merger coalescent models. Estimation of population genetic parameters under Wright-Fisher assumptions for these organisms may thus be prone to serious mis-inference. We propose a novel method for the joint inference of demography and selection under the Ψ-coalescent model, termed Multiple-Merger Coalescent Approximate Bayesian Computation, or MMC-ABC. We first demonstrate mis-inference under the Kingman, and then exhibit the superior performance of MMC-ABC under conditions of skewed offspring distributions. In order to highlight the utility of this approach, we reanalyzed previously published drug-selection lines of influenza A virus. We jointly inferred the extent of progeny-skew inherent to viral replication and identified putative drug-resistance mutations.
近年来,实验、自然和古代种群的时间序列群体基因组数据不断增加,同时也出现了许多从这些数据中推断人口统计学和选择性参数的方法。然而,这些方法在很大程度上假定感兴趣的群体很好地符合 Kingman 合并模型。实际上,许多生物体群体,包括病毒、海洋生物以及一些植物、原生生物和真菌,其后代数量的方差较大,最好用多合并合并模型来描述。因此,根据 Wright-Fisher 假设,这些生物体的种群遗传参数的估计可能会导致严重的错误推断。我们提出了一种新的方法,用于 Ψ 合并模型下的人口统计学和选择的联合推断,称为多合并近似贝叶斯计算,或 MMC-ABC。我们首先证明了 Kingman 下的错误推断,然后展示了 MMC-ABC 在偏态后代分布条件下的优越性能。为了突出这种方法的实用性,我们重新分析了之前发表的流感 A 病毒药物选择系。我们共同推断了病毒复制固有的后代偏态程度,并确定了可能的耐药性突变。