Suppr超能文献

基于人工智能的多参数乳腺 MRI 协议(包括超快速 DCE-MRI、T2 和 DWI)成像的乳腺病变分类。

Artificial Intelligence-Based Classification of Breast Lesions Imaged With a Multiparametric Breast MRI Protocol With Ultrafast DCE-MRI, T2, and DWI.

机构信息

From the Departments of Radiology and Nuclear Medicine, and.

Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.

出版信息

Invest Radiol. 2019 Jun;54(6):325-332. doi: 10.1097/RLI.0000000000000544.

Abstract

OBJECTIVES

We investigated artificial intelligence (AI)-based classification of benign and malignant breast lesions imaged with a multiparametric breast magnetic resonance imaging (MRI) protocol with ultrafast dynamic contrast-enhanced MRI, T2-weighted, and diffusion-weighted imaging with apparent diffusion coefficient mapping.

MATERIALS AND METHODS

We analyzed 576 lesions imaged with MRI, including a consecutive set of biopsied malignant (368) and benign (149) lesions, and an additional set of 59 benign lesions proven by follow-up. We used deep learning methods to interpret ultrafast dynamic contrast-enhanced MRI and T2-weighted information. A random forests classifier combined the output with patient information (PI; age and BRCA status) and apparent diffusion coefficient values obtained from diffusion-weighted imaging to perform the final lesion classification. We used receiver operating characteristic (ROC) analysis to evaluate our results. Sensitivity and specificity were compared with the results of the prospective clinical evaluation by radiologists.

RESULTS

The area under the ROC curve was 0.811 when only ultrafast dynamics was used. The final AI system that combined all imaging information with PI resulted in an area under the ROC curve of 0.852, significantly higher than the ultrafast dynamics alone (P = 0.002). When operating at the same sensitivity level of radiologists in this dataset, this system produced 19 less false-positives than the number of biopsied benign lesions in our dataset.

CONCLUSIONS

Use of adjunct imaging and PI has a significant contribution in diagnostic performance of ultrafast breast MRI. The developed AI system for interpretation of multiparametric ultrafast breast MRI may improve specificity.

摘要

目的

我们研究了基于人工智能(AI)的分类方法,该方法使用多参数乳腺磁共振成像(MRI)方案对良性和恶性乳腺病变进行分类,该方案包括超快速动态对比增强 MRI、T2 加权成像和扩散加权成像以及表观扩散系数图。

材料和方法

我们分析了 576 个 MRI 成像的病变,包括一组连续活检的恶性(368 个)和良性(149 个)病变,以及一组由随访证实的另外 59 个良性病变。我们使用深度学习方法来解释超快速动态对比增强 MRI 和 T2 加权信息。随机森林分类器结合患者信息(年龄和 BRCA 状态)和扩散加权成像获得的表观扩散系数值,对最终病变进行分类。我们使用接收者操作特征(ROC)分析来评估我们的结果。灵敏度和特异性与放射科医生的前瞻性临床评估结果进行了比较。

结果

仅使用超快速动力学时,ROC 曲线下面积为 0.811。最终的 AI 系统结合了所有成像信息和 PI,ROC 曲线下面积为 0.852,明显高于超快速动力学(P = 0.002)。当在该数据集的放射科医生相同的灵敏度水平下运行时,该系统产生的假阳性比我们数据集活检的良性病变少 19 个。

结论

附加成像和 PI 的使用对超快速乳腺 MRI 的诊断性能有显著贡献。用于解释多参数超快速乳腺 MRI 的开发 AI 系统可能会提高特异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验