Suppr超能文献

光氧化还原引发的芳基化反应中 IPrAu(I)-CF 和 IPrAu(I)-琥珀酰亚胺的 C-C 和 C-N 键形成机制。

Mechanism of Photoredox-Initiated C-C and C-N Bond Formation by Arylation of IPrAu(I)-CF and IPrAu(I)-Succinimide.

机构信息

Department of Chemistry , University of California , Berkeley , California 94720 , United States.

出版信息

J Am Chem Soc. 2019 Mar 13;141(10):4308-4315. doi: 10.1021/jacs.8b11273. Epub 2019 Jan 17.

Abstract

Herein, we report on the photoredox-initiated gold-mediated C(sp)-CF and C(sp)-N coupling reactions. By adopting gold as a platform for probing metallaphotoredox catalysis, we demonstrate that cationic gold(III) complexes are the key intermediates of the C-C and C-N coupling reactions. The high-valent gold(III) intermediates are accessed by virtue of photoredox catalysis through a radical chain process. In addition, the bond-forming step of the coupling reactions is the reductive elimination from cationic gold(III) intermediates, which is supported by isolation and crystallographic characterization of key Au(III) intermediates.

摘要

本文报道了光氧化还原引发的金介导的 C(sp)-CF 和 C(sp)-N 偶联反应。通过采用金作为探测金属光氧化还原催化的平台,我们证明了阳离子金(III)配合物是 C-C 和 C-N 偶联反应的关键中间体。高价金(III)中间体是通过光氧化还原催化通过自由基链过程获得的。此外,偶联反应的成键步骤是阳离子金(III)中间体的还原消除,这得到了关键 Au(III)中间体的分离和晶体学表征的支持。

相似文献

1
Mechanism of Photoredox-Initiated C-C and C-N Bond Formation by Arylation of IPrAu(I)-CF and IPrAu(I)-Succinimide.
J Am Chem Soc. 2019 Mar 13;141(10):4308-4315. doi: 10.1021/jacs.8b11273. Epub 2019 Jan 17.
2
Merging Visible Light Photoredox and Gold Catalysis.
Acc Chem Res. 2016 Oct 18;49(10):2261-2272. doi: 10.1021/acs.accounts.6b00351. Epub 2016 Sep 9.
3
Exceptionally fast carbon-carbon bond reductive elimination from gold(III).
Nat Chem. 2014 Feb;6(2):159-64. doi: 10.1038/nchem.1822. Epub 2013 Dec 22.
4
Directed γ-C(sp)-H Alkylation of Carboxylic Acid Derivatives through Visible Light Photoredox Catalysis.
J Am Chem Soc. 2017 Oct 25;139(42):14897-14900. doi: 10.1021/jacs.7b09306. Epub 2017 Oct 12.
5
Employing Photoredox Catalysis for DNA-Encoded Chemistry: Decarboxylative Alkylation of α-Amino Acids.
ChemMedChem. 2018 Oct 22;13(20):2159-2165. doi: 10.1002/cmdc.201800492. Epub 2018 Aug 23.
6
Cyclometalated Au Complexes for Cysteine Arylation in Zinc Finger Protein Domains: towards Controlled Reductive Elimination.
Chemistry. 2019 Jun 7;25(32):7628-7634. doi: 10.1002/chem.201901535. Epub 2019 May 9.
8
Phosphonium Formation by Facile Carbon-Phosphorus Reductive Elimination from Gold(III).
J Am Chem Soc. 2016 Jan 20;138(2):587-93. doi: 10.1021/jacs.5b10720. Epub 2016 Jan 8.
9
Photoinitiated oxidative addition of CF3I to gold(I) and facile aryl-CF3 reductive elimination.
J Am Chem Soc. 2014 May 28;136(21):7777-82. doi: 10.1021/ja503974x. Epub 2014 May 16.
10
Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis.
J Am Chem Soc. 2019 Apr 17;141(15):6385-6391. doi: 10.1021/jacs.9b01885. Epub 2019 Apr 2.

引用本文的文献

1
Au(I)-, Au(II)-, Au(III)-Fluoride Complexes: Synthesis and Applications in Organic Transformations.
Angew Chem Int Ed Engl. 2025 Apr 17;64(17):e202424656. doi: 10.1002/anie.202424656. Epub 2025 Feb 26.
2
Gold Tripyrrindione: Redox Chemistry and Reactivity with Dichloromethane.
Inorg Chem. 2024 Sep 16;63(37):17188-17197. doi: 10.1021/acs.inorgchem.4c02903. Epub 2024 Aug 31.
4
Cationic Gold(II) Complexes: Experimental and Theoretical Study.
Chemistry. 2022 Oct 26;28(60):e202201794. doi: 10.1002/chem.202201794. Epub 2022 Sep 1.
5
Homogeneous Gold Redox Chemistry: Organometallics, Catalysis, and Beyond.
Trends Chem. 2020 Aug;2(8):707-720. doi: 10.1016/j.trechm.2020.04.012. Epub 2020 Jun 2.
6
Mechanistic Investigation and Optimization of Photoredox Anti-Markovnikov Hydroamination.
J Am Chem Soc. 2021 Jul 14;143(27):10232-10242. doi: 10.1021/jacs.1c03644. Epub 2021 Jun 30.
7
Simple Synthetic Routes to Carbene-M-Amido (M=Cu, Ag, Au) Complexes for Luminescence and Photocatalysis Applications.
Chemistry. 2021 Aug 16;27(46):11904-11911. doi: 10.1002/chem.202101476. Epub 2021 Jun 28.
8
Trifluoromethylation of [AuF (SIMes)]: Preparation and Characterization of [Au(CF ) F (SIMes)] (x=1-3) Complexes.
Chemistry. 2020 Dec 4;26(68):16089-16097. doi: 10.1002/chem.202002940. Epub 2020 Oct 27.
9
Light-Induced Mechanistic Divergence in Gold(I) Catalysis: Revisiting the Reactivity of Diazonium Salts.
Angew Chem Int Ed Engl. 2019 Nov 18;58(47):16988-16993. doi: 10.1002/anie.201908268. Epub 2019 Oct 11.

本文引用的文献

1
Elucidation of a Redox-Mediated Reaction Cycle for Nickel-Catalyzed Cross Coupling.
J Am Chem Soc. 2019 Jan 9;141(1):89-93. doi: 10.1021/jacs.8b11262. Epub 2018 Dec 27.
3
Light-Induced Gold-Catalyzed Hiyama Arylation: A Coupling Access to Biarylboronates.
Angew Chem Int Ed Engl. 2018 Dec 17;57(51):16648-16653. doi: 10.1002/anie.201806427. Epub 2018 Nov 27.
4
Direct alkylation of heteroarenes with unactivated bromoalkanes using photoredox gold catalysis.
Chem Sci. 2016 Jul 1;7(7):4754-4758. doi: 10.1039/c6sc00807k. Epub 2016 Apr 18.
6
Transformations of Isonitriles with Bromoalkanes Using Photoredox Gold Catalysis.
J Org Chem. 2018 Sep 7;83(17):10015-10024. doi: 10.1021/acs.joc.8b01380. Epub 2018 Jul 16.
7
Understanding Thermal and Photochemical Aryl-Aryl Cross-Coupling by the Au /Au Redox Couple.
Chemistry. 2018 Sep 12;24(51):13636-13646. doi: 10.1002/chem.201802634. Epub 2018 Aug 20.
8
Decarboxylative sp C-N coupling via dual copper and photoredox catalysis.
Nature. 2018 Jul;559(7712):83-88. doi: 10.1038/s41586-018-0234-8. Epub 2018 Jun 20.
9
Dual gold/photoredox-catalyzed C(sp)-H arylation of terminal alkynes with diazonium salts.
Chem Sci. 2016 Jan 1;7(1):89-93. doi: 10.1039/c5sc02583d. Epub 2015 Oct 8.
10
Visible light-mediated gold-catalysed carbon(sp)-carbon(sp) cross-coupling.
Chem Sci. 2016 Jan 1;7(1):85-88. doi: 10.1039/c5sc03025k. Epub 2015 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验