Indiana University Purdue University Indianapolis, School of Informatics and Computing, Indianapolis, IN, United States of America.
Eli Lilly, Indianapolis, IN, United States of America.
PLoS One. 2019 Jan 17;14(1):e0210910. doi: 10.1371/journal.pone.0210910. eCollection 2019.
The massive genomic data from The Cancer Genome Atlas (TCGA), including proteomics data from Clinical Proteomic Tumor Analysis Consortium (CPTAC), provides a unique opportunity to study cancer systematically. While most observations are made from a single type of genomics data, we apply big data analytics and systems biology approaches by simultaneously analyzing DNA amplification, mRNA and protein abundance. Using multiple genomic profiles, we have discovered widespread dosage compensation for the extensive aneuploidy observed in TCGA breast cancer samples. We do identify 11 genes that show strong correlation across all features (DNA/mRNA/protein) analogous to that of the well-known oncogene HER2 (ERBB2). These genes are generally less well-characterized regarding their role in cancer and we advocate their further study. We also discover that shRNA knockdown of these genes has an impact on cancer cell growth, suggesting a vulnerability that could be used for cancer therapy. Our study shows the advantages of systematic big data methodologies and also provides future research directions.
来自癌症基因组图谱 (TCGA) 的大量基因组数据,包括临床蛋白质组肿瘤分析联盟 (CPTAC) 的蛋白质组学数据,为系统地研究癌症提供了独特的机会。虽然大多数观察结果都是基于单一类型的基因组数据,但我们通过同时分析 DNA 扩增、mRNA 和蛋白质丰度,应用了大数据分析和系统生物学方法。使用多种基因组谱,我们发现了在 TCGA 乳腺癌样本中观察到的广泛非整倍体的广泛剂量补偿。我们确实鉴定出 11 个基因,它们在所有特征(DNA/mRNA/蛋白质)上表现出与众所周知的致癌基因 HER2(ERBB2)相似的强相关性。这些基因在其在癌症中的作用方面通常不太为人所知,我们主张进一步研究这些基因。我们还发现,这些基因的 shRNA 敲低对癌细胞生长有影响,这表明可能用于癌症治疗的脆弱性。我们的研究表明了系统大数据方法的优势,并为未来的研究方向提供了参考。