文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有正磁致伸缩和负磁致伸缩的非晶带材中应力-阻抗效应的比较。

Comparison of Stress-Impedance Effect in Amorphous Ribbons with Positive and Negative Magnetostriction.

作者信息

Gazda Piotr, Nowicki Michał, Szewczyk Roman

机构信息

Warsaw University of Technology, Institute of Metrology and Biomedical Engineering, 02-525 Warsaw, Poland.

出版信息

Materials (Basel). 2019 Jan 16;12(2):275. doi: 10.3390/ma12020275.


DOI:10.3390/ma12020275
PMID:30654466
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6357023/
Abstract

The SI (stress-impedance) effect in amorphous ribbons with varying magnetostriction was investigated. Iron- and cobalt-based ribbons with different magnetostriction coefficients were put under tensile stress in a dead weight tester and the impedance change was investigated in function of applied stresses. Significant differences of characteristics are presented. Stress-impedance analog of Villari reversal point was observed. The reversal point showed driving current frequency dependence, in which this point manifests for different stress values. Based on the obtained SI characteristics and magnetoelastic hysteresis, the most appropriate stress-sensing material was selected for development of precise small forces sensor.

摘要

研究了具有不同磁致伸缩的非晶带材中的SI(应力-阻抗)效应。将具有不同磁致伸缩系数的铁基和钴基带材置于静重试验机中承受拉伸应力,并研究阻抗变化与施加应力的函数关系。给出了特性上的显著差异。观察到了Villari反转点的应力-阻抗类似物。反转点表现出驱动电流频率依赖性,其中该点在不同应力值下表现不同。基于所获得的SI特性和磁弹性滞后,选择了最合适的应力传感材料来开发精确的小力传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/a10dc0943cf9/materials-12-00275-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/ac084477626a/materials-12-00275-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/85352f2352bb/materials-12-00275-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/9a9f82407c4d/materials-12-00275-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/0e52719e8eb5/materials-12-00275-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/3aeb1082fe43/materials-12-00275-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/77b7dc26b4cd/materials-12-00275-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/c75262161119/materials-12-00275-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/0fcebda137f5/materials-12-00275-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/a10dc0943cf9/materials-12-00275-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/ac084477626a/materials-12-00275-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/85352f2352bb/materials-12-00275-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/9a9f82407c4d/materials-12-00275-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/0e52719e8eb5/materials-12-00275-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/3aeb1082fe43/materials-12-00275-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/77b7dc26b4cd/materials-12-00275-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/c75262161119/materials-12-00275-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/0fcebda137f5/materials-12-00275-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7948/6357023/a10dc0943cf9/materials-12-00275-g009.jpg

相似文献

[1]
Comparison of Stress-Impedance Effect in Amorphous Ribbons with Positive and Negative Magnetostriction.

Materials (Basel). 2019-1-16

[2]
Stress Dependence of the Small Angle Magnetization Rotation Signal in Commercial Amorphous Ribbons.

Materials (Basel). 2019-9-9

[3]
Magnetoimpedance and Stress-Impedance Effects in Amorphous CoFeSiB Ribbons at Elevated Temperatures.

Materials (Basel). 2020-7-19

[4]
Giant Stress Impedance Magnetoelastic Sensors Employing Soft Magnetic Amorphous Ribbons.

Materials (Basel). 2020-5-8

[5]
Impact of Stress Annealing on the Magnetization Process of Amorphous and Nanocrystalline Co-Based Microwires.

Materials (Basel). 2019-8-20

[6]
Applications and Advances of Magnetoelastic Sensors in Biomedical Engineering: A Review.

Materials (Basel). 2019-4-7

[7]
Microstructure and Its Effect on the Magnetic, Magnetocaloric and Magnetostrictive Properties of TbCoFe Glassy Ribbons.

Materials (Basel). 2021-6-4

[8]
Surface Magnetostriction of FeCoB Amorphous Ribbons Analyzed Using Magneto-Optical Kerr Microscopy.

Materials (Basel). 2020-1-7

[9]
Giant Stress-Impedance Effect in CoFeNiMoBSi Alloy in Variation of Applied Magnetic Field.

Materials (Basel). 2021-4-12

[10]
Stress Dependence of Seebeck Coefficient in Iron-Based Amorphous Ribbons.

Materials (Basel). 2019-9-2

引用本文的文献

[1]
Amorphous FeCoCrSiB Ribbons with Tailored Anisotropy for the Development of Magnetic Elements for High Frequency Applications.

Materials (Basel). 2022-6-12

[2]
Magnetoimpedance of CoFeCrSiB Ribbon-Based Sensitive Element with FeNi Covering: Experiment and Modeling.

Sensors (Basel). 2021-10-10

[3]
Giant Stress-Impedance Effect in CoFeNiMoBSi Alloy in Variation of Applied Magnetic Field.

Materials (Basel). 2021-4-12

[4]
Magnetoimpedance and Stress-Impedance Effects in Amorphous CoFeSiB Ribbons at Elevated Temperatures.

Materials (Basel). 2020-7-19

[5]
Simple Device to Measure Pressure Using the Stress Impedance Effect of Amorphous Soft Magnetic Thin Film.

Micromachines (Basel). 2020-6-30

[6]
Villari Effect at Low Strain in Magnetoactive Materials.

Materials (Basel). 2020-5-29

[7]
Novel Magnetic Field Modulation Concept Using Multiferroic Heterostructure for Magnetoresistive Sensors.

Sensors (Basel). 2020-3-6

[8]
Novel Giant Magnetoimpedance Magnetic Field Sensor.

Sensors (Basel). 2020-1-27

[9]
An Hourglass-Shaped Wireless and Passive Magnetoelastic Sensor with an Improved Frequency Sensitivity for Remote Strain Measurements.

Sensors (Basel). 2020-1-8

[10]
Modelling the Characteristics of Ring-Shaped Magnetoelastic Force Sensor in Mohri's Configuration.

Sensors (Basel). 2020-1-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索