文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Amorphous FeCoCrSiB Ribbons with Tailored Anisotropy for the Development of Magnetic Elements for High Frequency Applications.

作者信息

Kurlyandskaya Galina V, Lezama Luis, Pasynkova Anna A, Volchkov Stanislav O, Lukshina Vera A, Larrañaga Aitor, Dmitrieva Natalia V, Timofeeva Anastasia V, Orue Iñaki

机构信息

Department of Electricity and Electronics, Basque Country University (UPV/EHU), 48940 Leioa, Spain.

Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia.

出版信息

Materials (Basel). 2022 Jun 12;15(12):4160. doi: 10.3390/ma15124160.


DOI:10.3390/ma15124160
PMID:35744219
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9229370/
Abstract

The ferromagnetic resonance (FMR) in the frequency range of 0.5 to 12.5 GHz has been investigated as a function of external magnetic field for rapidly quenched FeCoCrSiB amorphous ribbons with different features of the effective magnetic anisotropy. Three states of the ribbons were considered: as-quenched without any treatment; after relaxation annealing without stress at the temperature of 350 °C during 1 h; and after annealing under specific stress of 230 MPa at the temperature of 350 °C during 1 h. For FMR measurements, we adapted a technique previously proposed and tested for the case of microwires. Here, amorphous ribbons were studied using the sample holder based on a commercial SMA connector. On the basis of the measurements of the reflection coefficient S the total impedance including its real and imaginary components was determined to be in the frequency range of 0.5 to 12.5 GHz. In order to confirm the validity of the proposed technique, FMR was also measured by the certified cavity perturbation technique using a commercial Bruker spectrometer operating at X-band frequency of 9.39 GHz. As part of the characterization of the ribbons used for microwave measurements, comparative analysis was performed of X-ray diffraction, optical microscopy, transmission electron microscopy, inductive magnetic hysteresis loops, vibrating sample magnetometry, magneto-optical Kerr effect (including magnetic domains) and magnetoimpedance data for of all samples.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/ad5466dc50f1/materials-15-04160-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/7d5e3f2ff558/materials-15-04160-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/e37310614f44/materials-15-04160-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/d8a67f15735f/materials-15-04160-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/44767ea1779a/materials-15-04160-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/c46cd7441d1b/materials-15-04160-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/cae5ad10a0f1/materials-15-04160-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/6e337bee0ce8/materials-15-04160-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/27cb27d49227/materials-15-04160-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/ad5466dc50f1/materials-15-04160-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/7d5e3f2ff558/materials-15-04160-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/e37310614f44/materials-15-04160-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/d8a67f15735f/materials-15-04160-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/44767ea1779a/materials-15-04160-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/c46cd7441d1b/materials-15-04160-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/cae5ad10a0f1/materials-15-04160-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/6e337bee0ce8/materials-15-04160-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/27cb27d49227/materials-15-04160-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/9229370/ad5466dc50f1/materials-15-04160-g009.jpg

相似文献

[1]
Amorphous FeCoCrSiB Ribbons with Tailored Anisotropy for the Development of Magnetic Elements for High Frequency Applications.

Materials (Basel). 2022-6-12

[2]
Anomalous Nernst Effect in Flexible Co-Based Amorphous Ribbons.

Sensors (Basel). 2023-1-27

[3]
Structural and magnetic behaviour of soft magnetic Finemet-type ribbons.

J Nanosci Nanotechnol. 2008-6

[4]
Thermal annealing dependence of high-frequency magnetoimpedance in amorphous and nanocrystalline FeSiBCuNb ribbons.

J Nanosci Nanotechnol. 2008-6

[5]
High-Frequency Magnetoimpedance (MI) and Stress-MI in Amorphous Microwires with Different Anisotropies.

Nanomaterials (Basel). 2021-5-2

[6]
Optimization of magnetic properties and GMI effect of Thin Co-rich Microwires for GMI Microsensors.

Sensors (Basel). 2020-3-11

[7]
Surface Magnetostriction of FeCoB Amorphous Ribbons Analyzed Using Magneto-Optical Kerr Microscopy.

Materials (Basel). 2020-1-7

[8]
Analysis of Magneto-Optical Hysteresis Loops of Amorphous and Surface-Crystalline Fe-Based Ribbons.

Materials (Basel). 2020-12-31

[9]
Magnetic Domain Patterns in Bilayered Ribbons Studied by Magnetic Force Microscopy and Magneto-Optical Kerr Microscopy.

Scanning. 2018-3-26

[10]
Scattering of Microwaves by a Passive Array Antenna Based on Amorphous Ferromagnetic Microwires for Wireless Sensors with Biomedical Applications.

Sensors (Basel). 2019-7-11

引用本文的文献

[1]
Magnetoimpedance Effect in Cobalt-Based Amorphous Ribbons with an Inhomogeneous Magnetic Structure.

Sensors (Basel). 2023-10-7

[2]
Longitudinal Spin Seebeck Effect Thermopiles Based on Flexible Co-Rich Amorphous Ribbons/Pt Thin-Film Heterostructures.

Sensors (Basel). 2023-9-10

[3]
Anomalous Nernst Effect in Flexible Co-Based Amorphous Ribbons.

Sensors (Basel). 2023-1-27

本文引用的文献

[1]
Advanced Characterization of FeNi-Based Films for the Development of Magnetic Field Sensors with Tailored Functional Parameters.

Sensors (Basel). 2022-4-26

[2]
Magnetoimpedance of CoFeCrSiB Ribbon-Based Sensitive Element with FeNi Covering: Experiment and Modeling.

Sensors (Basel). 2021-10-10

[3]
Giant Stress Impedance Magnetoelastic Sensors Employing Soft Magnetic Amorphous Ribbons.

Materials (Basel). 2020-5-8

[4]
Comparison of Stress-Impedance Effect in Amorphous Ribbons with Positive and Negative Magnetostriction.

Materials (Basel). 2019-1-16

[5]
Polyacrylamide Ferrogels with Magnetite or Strontium Hexaferrite: Next Step in the Development of Soft Biomimetic Matter for Biosensor Applications.

Sensors (Basel). 2018-1-16

[6]
Giant magnetoimpedance in the ferromagnetic alloy Co75-xFexSi15B10.

Phys Rev B Condens Matter. 1995-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索