Suppr超能文献

用于脉络膜黑色素瘤治疗的 HollandPTC 质子治疗束线的特性描述及机构间比较。

Characterization of the HollandPTC proton therapy beamline dedicated to uveal melanoma treatment and an interinstitutional comparison.

机构信息

Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands.

Holland Proton Therapy Center, Delft, The Netherlands.

出版信息

Med Phys. 2021 Aug;48(8):4506-4522. doi: 10.1002/mp.15024. Epub 2021 Jul 11.

Abstract

PURPOSE

Eye-dedicated proton therapy (PT) facilities are used to treat malignant intraocular lesions, especially uveal melanoma (UM). The first commercial ocular PT beamline from Varian was installed in the Netherlands. In this work, the conceptual design of the new eyeline is presented. In addition, a comprehensive comparison against five PT centers with dedicated ocular beamlines is performed, and the clinical impact of the identified differences is analyzed.

MATERIAL/METHODS: The HollandPTC eyeline was characterized. Four centers in Europe and one in the United States joined the study. All centers use a cyclotron for proton beam generation and an eye-dedicated nozzle. Differences among the chosen ocular beamlines were in the design of the nozzle, nominal energy, and energy spectrum. The following parameters were collected for all centers: technical characteristics and a set of distal, proximal, and lateral region measurements. The measurements were performed with detectors available in-house at each institution. The institutions followed the International Atomic Energy Agency (IAEA) Technical Report Series (TRS)-398 Code of Practice for absolute dose measurement, and the IAEA TRS-398 Code of Practice, its modified version or International Commission on Radiation Units and Measurements Report No. 78 for spread-out Bragg peak normalization. Energy spreads of the pristine Bragg peaks were obtained with Monte Carlo simulations using Geant4. Seven tumor-specific case scenarios were simulated to evaluate the clinical impact among centers: small, medium, and large UM, located either anteriorly, at the equator, or posteriorly within the eye. Differences in the depth dose distributions were calculated.

RESULTS

A pristine Bragg peak of HollandPTC eyeline corresponded to the constant energy of 75 MeV (maximal range 3.97 g/cm in water) with an energy spread of 1.10 MeV. The pristine Bragg peaks for the five participating centers varied from 62.50 to 104.50 MeV with an energy spread variation between 0.10 and 0.70 MeV. Differences in the average distal fall-offs and lateral penumbrae (LPs) (over the complete set of clinically available beam modulations) among all centers were up to 0.25 g/cm , and 0.80 mm, respectively. Average distal fall-offs of the HollandPTC eyeline were 0.20 g/cm , and LPs were between 1.50 and 2.15 mm from proximal to distal regions, respectively. Treatment time, around 60 s, was comparable among all centers. The virtual source-to-axis distance of 120 cm at HollandPTC was shorter than for the five participating centers (range: 165-350 cm). Simulated depth dose distributions demonstrated the impact of the different beamline characteristics among institutions. The largest difference was observed for a small UM located at the posterior pole, where a proximal dose between two extreme centers was up to 20%.

CONCLUSIONS

HollandPTC eyeline specifications are in accordance with five other ocular PT beamlines. Similar clinical concepts can be applied to expect the same high local tumor control. Dosimetrical properties among the six institutions induce most likely differences in ocular radiation-related toxicities. This interinstitutional comparison could support further research on ocular post-PT complications. Finally, the findings reported in this study could be used to define dosimetrical guidelines for ocular PT to unify the concepts among institutions.

摘要

目的

眼部专用质子治疗(PT)设施用于治疗恶性眼内病变,特别是脉络膜黑色素瘤(UM)。瓦里安公司的第一条商业眼专用质子束线已在荷兰安装。在这项工作中,提出了新视线的概念设计。此外,还对五个具有专用眼部束线的 PT 中心进行了全面比较,并分析了所确定差异的临床影响。

材料/方法:对荷兰的 PTC 束线进行了描述。欧洲的四个中心和美国的一个中心参加了这项研究。所有中心均使用回旋加速器产生质子束,并采用专用的眼部喷嘴。所选眼部束线的差异在于喷嘴的设计、标称能量和能谱。为所有中心收集了以下参数:技术特点和一组远端、近端和侧向区域测量值。这些测量值是在每个机构内部可用的探测器上进行的。各机构遵循国际原子能机构(IAEA)技术报告系列(TRS)-398 剂量测量绝对标准以及 IAEA TRS-398 标准的修订版或国际辐射单位和测量委员会报告 78 用于扩展布拉格峰归一化。使用 Geant4 进行蒙特卡罗模拟获得原始布拉格峰的能谱。模拟了七个肿瘤特定的病例场景,以评估中心之间的临床影响:小、中、大 UM,位于眼球的前部、赤道或后部。计算了深度剂量分布的差异。

结果

荷兰 PTC 束线的原始布拉格峰对应于恒定能量为 75 MeV(水的最大射程为 3.97 g/cm),能谱为 1.10 MeV。五个参与中心的原始布拉格峰能量从 62.50 到 104.50 MeV 不等,能谱变化在 0.10 到 0.70 MeV 之间。所有中心之间的平均远端下降和侧向半影(LP)(在完整的临床可用束调制集上)差异最大可达 0.25 g/cm 和 0.80 mm。荷兰 PTC 束线的平均远端下降为 0.20 g/cm,LP 从近端到远端区域分别在 1.50 到 2.15 mm 之间。所有中心的治疗时间约为 60 秒,可相媲美。荷兰 PTC 的虚拟源轴距离为 120 cm,短于五个参与中心(范围:165-350 cm)。模拟的深度剂量分布显示了机构之间不同束线特性的影响。在位于后极的小 UM 中观察到最大差异,其中两个极端中心的近端剂量高达 20%。

结论

荷兰 PTC 束线规格与其他五个眼部 PT 束线一致。类似的临床概念可以应用于预期相同的高局部肿瘤控制。六个机构之间的剂量学特性可能导致与眼部辐射相关的毒性的差异。这种机构间比较可以支持对眼部 PT 后并发症的进一步研究。最后,本研究报告的结果可用于定义眼部 PT 的剂量学指南,以统一机构之间的概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d04/8457201/750e787c5733/MP-48-4506-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验