Suppr超能文献

基于真实微血管网络模型研究血液磁化率对磁共振信号的依赖性。

Dependence of the MR signal on the magnetic susceptibility of blood studied with models based on real microvascular networks.

机构信息

Neurophotonics Center, Department of Biomedical Engineering, Boston University, Massachusetts.

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.

出版信息

Magn Reson Med. 2019 Jun;81(6):3865-3874. doi: 10.1002/mrm.27660. Epub 2019 Jan 18.

Abstract

PURPOSE

The primary goal of this study was to estimate the value of , the exponent in the power law relating changes of the transverse relaxation rate and intra-extravascular local magnetic susceptibility differences as . The secondary objective was to evaluate any differences that might exist in the value of obtained using a deoxyhemoglobin-weighted distribution versus a constant distribution assumed in earlier computations. The third objective was to estimate the value of β that is relevant for methods based on susceptibility contrast agents with a concentration of higher than that used for BOLD fMRI calculations.

METHODS

Our recently developed model of real microvascular anatomical networks is used to extend the original simplified Monte-Carlo simulations to compute from the first principles.

RESULTS

Our results show that for most BOLD fMRI measurements of real vascular networks, as opposed to earlier predictions of .5 using uniform distributions. For perfusion or fMRI methods based on contrast agents, which generate larger values for , for 9.4 T, whereas at 14 T can drop below 1 and the variation across subjects is large, indicating that a lower concentration of contrast agent with a lower value of is desired for experiments at high B .

CONCLUSION

These results improve our understanding of the relationship between R and the underlying microvascular properties. The findings will help to infer the cerebral metabolic rate of oxygen and cerebral blood volume from BOLD and perfusion MRI, respectively.

摘要

目的

本研究的主要目的是估计 的值,即横向弛豫率变化与血管内外局部磁化率差异的幂律关系中的指数。次要目的是评估在使用去氧血红蛋白加权 分布与早期计算中假设的常数 分布获得的 值可能存在的差异。第三个目的是估计对于浓度高于用于 BOLD fMRI 计算的浓度的顺磁对比剂相关方法的β值。

方法

我们最近开发的真实微血管解剖网络模型用于从第一性原理扩展原始简化的蒙特卡罗模拟,以计算 。

结果

我们的结果表明,对于大多数真实血管网络的 BOLD fMRI 测量,与使用均匀 分布的早期预测的 .5 相反。对于基于对比剂的灌注或 fMRI 方法,由于 , 对于 9.4 T ,而在 14 T 下 可以低于 1,并且个体之间的差异很大,这表明对于高 B 下的实验,需要具有较低值的较低浓度的对比剂。

结论

这些结果提高了我们对 R 与潜在微血管特性之间关系的理解。这些发现将有助于分别从 BOLD 和灌注 MRI 推断脑氧代谢率和脑血容量。

相似文献

3
Quantitative β mapping for calibrated fMRI.用于校准功能磁共振成像的定量β映射
Neuroimage. 2016 Feb 1;126:219-28. doi: 10.1016/j.neuroimage.2015.11.042. Epub 2015 Nov 24.

引用本文的文献

2
Epileptic brain network mechanisms and neuroimaging techniques for the brain network.癫痫脑网络机制及脑网络神经成像技术
Neural Regen Res. 2024 Dec 1;19(12):2637-2648. doi: 10.4103/1673-5374.391307. Epub 2023 Dec 21.
4
Cerebral oxygen metabolism from MRI susceptibility.MRI 对脑氧代谢的研究
Neuroimage. 2023 Aug 1;276:120189. doi: 10.1016/j.neuroimage.2023.120189. Epub 2023 May 23.

本文引用的文献

2
Field strength dependence of grey matter R on venous oxygenation.灰质R对静脉氧合的场强依赖性。
Neuroimage. 2017 Feb 1;146:327-332. doi: 10.1016/j.neuroimage.2016.10.004. Epub 2016 Oct 5.
4
Quantitative β mapping for calibrated fMRI.用于校准功能磁共振成像的定量β映射
Neuroimage. 2016 Feb 1;126:219-28. doi: 10.1016/j.neuroimage.2015.11.042. Epub 2015 Nov 24.
8
Calibrated FMRI.校准功能磁共振成像。
Neuroimage. 2012 Aug 15;62(2):930-7. doi: 10.1016/j.neuroimage.2012.02.022. Epub 2012 Feb 17.
9
Quantitative functional MRI: concepts, issues and future challenges.定量功能磁共振成像:概念、问题及未来挑战。
Neuroimage. 2012 Aug 15;62(2):1234-40. doi: 10.1016/j.neuroimage.2011.10.046. Epub 2011 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验