Tahir Waleed, Kura Sreekanth, Zhu Jiabei, Cheng Xiaojun, Damseh Rafat, Tadesse Fetsum, Seibel Alex, Lee Blaire S, Lesage Frédéric, Sakadžic Sava, Boas David A, Tian Lei
Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
Department of Biomedical Engineering, Boston University, Boston, MA, USA.
BME Front. 2020 Dec 5;2020:8620932. doi: 10.34133/2020/8620932. eCollection 2020.
. Segmentation of blood vessels from two-photon microscopy (2PM) angiograms of brains has important applications in hemodynamic analysis and disease diagnosis. Here, we develop a generalizable deep learning technique for accurate 2PM vascular segmentation of sizable regions in mouse brains acquired from multiple 2PM setups. The technique is computationally efficient, thus ideal for large-scale neurovascular analysis. . Vascular segmentation from 2PM angiograms is an important first step in hemodynamic modeling of brain vasculature. Existing segmentation methods based on deep learning either lack the ability to generalize to data from different imaging systems or are computationally infeasible for large-scale angiograms. In this work, we overcome both these limitations by a method that is generalizable to various imaging systems and is able to segment large-scale angiograms. . We employ a computationally efficient deep learning framework with a loss function that incorporates a balanced binary-cross-entropy loss and total variation regularization on the network's output. Its effectiveness is demonstrated on experimentally acquired in vivo angiograms from mouse brains of dimensions up to . . To demonstrate the superior generalizability of our framework, we train on data from only one 2PM microscope and demonstrate high-quality segmentation on data from a different microscope without any network tuning. Overall, our method demonstrates 10× faster computation in terms of voxels-segmented-per-second and 3× larger depth compared to the state-of-the-art. . Our work provides a generalizable and computationally efficient anatomical modeling framework for brain vasculature, which consists of deep learning-based vascular segmentation followed by graphing. It paves the way for future modeling and analysis of hemodynamic response at much greater scales that were inaccessible before.
从双光子显微镜(2PM)脑造影中分割血管在血流动力学分析和疾病诊断中具有重要应用。在此,我们开发了一种可推广的深度学习技术,用于对从多个2PM设置获取的小鼠大脑中相当大区域进行准确的2PM血管分割。该技术计算效率高,因此非常适合大规模神经血管分析。
从2PM血管造影中进行血管分割是脑血管系统血流动力学建模的重要第一步。现有的基于深度学习的分割方法要么缺乏推广到来自不同成像系统数据的能力,要么对于大规模血管造影在计算上不可行。在这项工作中,我们通过一种可推广到各种成像系统且能够分割大规模血管造影的方法克服了这两个限制。
我们采用了一个计算效率高的深度学习框架,其损失函数结合了平衡的二元交叉熵损失和对网络输出的总变差正则化。其有效性在实验获取的尺寸达[具体尺寸]的小鼠脑体内血管造影上得到了证明。
为了证明我们框架的卓越可推广性,我们仅在来自一台2PM显微镜的数据上进行训练,并在来自另一台不同显微镜的数据上展示了高质量的分割,而无需对网络进行任何调整。总体而言,与现有技术相比,我们的方法在每秒分割体素方面计算速度快10倍,分割深度大3倍。
我们的工作为脑血管系统提供了一个可推广且计算高效的解剖建模框架,该框架由基于深度学习的血管分割及后续的图形化组成。它为未来在前所未及的更大尺度上对血流动力学响应进行建模和分析铺平了道路。