Medical Biophysics, University of Toronto, Toronto, Canada.
Rotman Research Institute, Baycrest, Toronto, Canada.
J Cereb Blood Flow Metab. 2022 Jul;42(7):1139-1162. doi: 10.1177/0271678X221077338. Epub 2022 Mar 16.
Conventional functional MRI (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping human brain activity non-invasively. Recent interest in quantitative fMRI has renewed the importance of oxidative neuroenergetics as reflected by cerebral metabolic rate of oxygen consumption (CMR) to support brain function. Dynamic CMR mapping by calibrated fMRI require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and/or volume (CBV). In human subjects this "calibration" is typically performed using a gas mixture containing small amounts of carbon dioxide and/or oxygen-enriched medical air, which are thought to produce changes in CBF (and CBV) and BOLD signal with minimal or no CMR changes. However non-human studies have demonstrated that the "calibration" can also be achieved without gases, revealing good agreement between CMR changes and underlying neuronal activity (e.g., multi-unit activity and local field potential). Given the simpler set-up of gas-free calibrated fMRI, there is evidence of recent clinical applications for this less intrusive direction. This up-to-date review emphasizes technological advances for such translational gas-free calibrated fMRI experiments, also covering historical progression of the calibrated fMRI field that is impacting neurological and neurodegenerative investigations of the human brain.
传统的血氧水平依赖(BOLD)对比功能磁共振成像(fMRI)是一种无创性人脑活动映射的重要工具。最近对定量 fMRI 的兴趣重新强调了氧化神经能量学的重要性,表现为大脑耗氧量的代谢率(CMR)来支持大脑功能。通过校准 fMRI 进行动态 CMR 映射需要 BOLD 信号以及脑血流(CBF)和/或体积(CBV)的多模态测量。在人体中,这种“校准”通常使用含有少量二氧化碳和/或富氧医用空气的气体混合物来完成,这些气体混合物被认为可以在最小或没有 CMR 变化的情况下引起 CBF(和 CBV)和 BOLD 信号的变化。然而,非人类研究表明,即使没有气体也可以实现“校准”,从而在 CMR 变化和潜在神经元活动(例如,多单位活动和局部场电位)之间显示出良好的一致性。鉴于无气体校准 fMRI 的设置更简单,因此有证据表明这种侵入性较小的方法最近在临床中有应用。这篇最新综述强调了这种转化无气体校准 fMRI 实验的技术进步,还涵盖了校准 fMRI 领域的历史进展,这些进展正在影响人类大脑的神经和神经退行性研究。