Suppr超能文献

在微流控流中创建捕获区可极大地提高癌症检测的通量和效率。

Creating a capture zone in microfluidic flow greatly enhances the throughput and efficiency of cancer detection.

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.

Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Biomaterials. 2019 Mar;197:161-170. doi: 10.1016/j.biomaterials.2019.01.014. Epub 2019 Jan 8.

Abstract

Efficient capture of rare circulating tumor cells (CTCs) from blood samples is valuable for early cancer detection to improve the management of cancer. In this work, we developed a highly efficient microfluidics-based method for detecting CTCs in human blood. This is achieved by creating separate capture and flow zones in the microfluidic device (ZonesChip) and using patterned dielectrophoretic force to direct cells from the flow zone into the capture zone. This separation of the capture and flow zones minimizes the negative impact of high flow speed (and thus high throughput) and force in the flow zone on the capture efficiency, overcoming a major bottleneck of contemporary microfluidic approaches using overlapping flow and capture zones for CTC detection. When the flow speed is high (≥0.58 mm/s) in the flow zone, the separation of capture and flow zones in our ZonesChip could improve the capture efficiency from ∼0% (for conventional device without separating the two zones) to ∼100%. Our ZonesChip shows great promise as an effective platform for the detection of CTCs in blood from patients with early/localized-stage colorectal tumors.

摘要

从血液样本中高效捕获罕见的循环肿瘤细胞(CTC)对于早期癌症检测具有重要价值,可改善癌症的治疗管理。在这项工作中,我们开发了一种基于微流控的高效方法,用于检测人血液中的 CTC。这是通过在微流控装置(ZoneChip)中创建单独的捕获区和流动区,并使用图案化介电泳力将细胞从流动区引导至捕获区来实现的。这种捕获区和流动区的分离最小化了流动区中高速流动(从而高吞吐量)和力对捕获效率的负面影响,克服了使用重叠流动区和捕获区进行 CTC 检测的当代微流控方法的主要瓶颈。当流动区中的流动速度较高(≥0.58 mm/s)时,我们的 ZoneChip 中捕获区和流动区的分离可以将捕获效率从约 0%(对于没有分离两个区的传统装置)提高到约 100%。我们的 ZoneChip 作为一种从早期/局部阶段结直肠肿瘤患者血液中检测 CTC 的有效平台具有广阔的应用前景。

相似文献

1
Creating a capture zone in microfluidic flow greatly enhances the throughput and efficiency of cancer detection.
Biomaterials. 2019 Mar;197:161-170. doi: 10.1016/j.biomaterials.2019.01.014. Epub 2019 Jan 8.
5
Feasibility of a novel one-stop ISET device to capture CTCs and its clinical application.
Oncotarget. 2017 Jan 10;8(2):3029-3041. doi: 10.18632/oncotarget.13823.
7
Highly Efficient Isolation of Circulating Tumor Cells Using a Simple Wedge-Shaped Microfluidic Device.
IEEE Trans Biomed Eng. 2019 Jun;66(6):1536-1541. doi: 10.1109/TBME.2018.2875361. Epub 2018 Oct 10.
8
A Fully Automated and Integrated Microfluidic System for Efficient CTC Detection and Its Application in Hepatocellular Carcinoma Screening and Prognosis.
ACS Appl Mater Interfaces. 2021 Jun 30;13(25):30174-30186. doi: 10.1021/acsami.1c06337. Epub 2021 Jun 18.
9
Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells.
Biosens Bioelectron. 2018 Mar 15;101:311-316. doi: 10.1016/j.bios.2017.10.036. Epub 2017 Oct 17.
10
Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture.
Electrophoresis. 2013 Nov;34(20-21):2970-9. doi: 10.1002/elps.201300242. Epub 2013 Oct 9.

引用本文的文献

2
Application of Microfluidics in Detection of Circulating Tumor Cells.
Front Bioeng Biotechnol. 2022 May 12;10:907232. doi: 10.3389/fbioe.2022.907232. eCollection 2022.
3
Serum untargeted lipidomics by UHPLC-ESI-HRMS aids the biomarker discovery of colorectal adenoma.
BMC Cancer. 2022 Mar 24;22(1):314. doi: 10.1186/s12885-022-09427-1.
4
[Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
Se Pu. 2022 Mar 8;40(3):213-223. doi: 10.3724/SP.J.1123.2021.07009.
5
Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles.
ACS Biomater Sci Eng. 2021 Jun 14;7(6):2043-2063. doi: 10.1021/acsbiomaterials.1c00083. Epub 2021 Apr 19.
6
Aptamer-based photoelectrochemical assay for the determination of MCF-7.
Mikrochim Acta. 2020 Apr 3;187(5):257. doi: 10.1007/s00604-020-04239-1.
8
Simulation of circulating tumor cell transport and adhesion in cell suspensions in microfluidic devices.
Biomicrofluidics. 2019 Nov 7;13(6):064105. doi: 10.1063/1.5129787. eCollection 2019 Nov.

本文引用的文献

1
Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation.
Small. 2018 Aug;14(32):e1801131. doi: 10.1002/smll.201801131. Epub 2018 Jul 3.
2
Multivalent Binding and Biomimetic Cell Rolling Improves the Sensitivity and Specificity of Circulating Tumor Cell Capture.
Clin Cancer Res. 2018 Jun 1;24(11):2539-2547. doi: 10.1158/1078-0432.CCR-17-3078. Epub 2018 Mar 15.
3
Cancer statistics, 2018.
CA Cancer J Clin. 2018 Jan;68(1):7-30. doi: 10.3322/caac.21442. Epub 2018 Jan 4.
6
Microfluidic isolation of platelet-covered circulating tumor cells.
Lab Chip. 2017 Oct 11;17(20):3498-3503. doi: 10.1039/c7lc00654c.
7
Biophysical isolation and identification of circulating tumor cells.
Lab Chip. 2017 Apr 11;17(8):1452-1461. doi: 10.1039/c7lc00038c.
8
Identification and Quantitation of Circulating Tumor Cells.
Annu Rev Anal Chem (Palo Alto Calif). 2017 Jun 12;10(1):321-343. doi: 10.1146/annurev-anchem-061516-045405. Epub 2017 Mar 6.
9
Enhanced Isolation and Release of Circulating Tumor Cells Using Nanoparticle Binding and Ligand Exchange in a Microfluidic Chip.
J Am Chem Soc. 2017 Feb 22;139(7):2741-2749. doi: 10.1021/jacs.6b12236. Epub 2017 Feb 9.
10
An RNA-based signature enables high specificity detection of circulating tumor cells in hepatocellular carcinoma.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1123-1128. doi: 10.1073/pnas.1617032114. Epub 2017 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验