Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina.
Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Division of Pediatric Dentistry, The Ohio State University College of Dentistry, Columbus, Ohio.
Am J Pathol. 2019 Feb;189(2):370-390. doi: 10.1016/j.ajpath.2018.10.017. Epub 2019 Jan 16.
Commensal gut microbiota-host immune responses are experimentally delineated via gnotobiotic animal models or alternatively by antibiotic perturbation of gut microbiota. Osteoimmunology investigations in germ-free mice, revealing that gut microbiota immunomodulatory actions critically regulate physiologic skeletal development, highlight that antibiotic perturbation of gut microbiota may dysregulate normal osteoimmunological processes. We investigated the impact of antibiotic disruption of gut microbiota on osteoimmune response effects in postpubertal skeletal development. Sex-matched C57BL/6T mice were administered broad-spectrum antibiotics or vehicle-control from the age of 6 to 12 weeks. Antibiotic alterations in gut bacterial composition and skeletal morphology were sex dependent. Antibiotics did not influence osteoblastogenesis or endochondral bone formation, but notably enhanced osteoclastogenesis. Unchanged Tnf or Ccl3 expression in marrow and elevated tumor necrosis factor-α and chemokine (C-C motif) ligand 3 in serum indicated that the pro-osteoclastic effects of the antibiotics are driven by increased systemic inflammation. Antibiotic-induced broad changes in adaptive and innate immune cells in mesenteric lymph nodes and spleen demonstrated that the perturbation of gut microbiota drives a state of dysbiotic hyperimmune response at secondary lymphoid tissues draining local gut and systemic circulation. Antibiotics up-regulated the myeloid-derived suppressor cells, immature myeloid progenitor cells known for immunosuppressive properties in pathophysiologic inflammatory conditions. Myeloid-derived suppressor cell-mediated immunosuppression can be antigen specific. Therefore, antibiotic-induced broad suppression of major histocompatibility complex class II antigen presentation genes in bone marrow discerns that antibiotic perturbation of gut microbiota dysregulates critical osteoimmune cross talk.
共生肠道微生物群与宿主免疫反应可通过无菌动物模型或通过抗生素干扰肠道微生物群来进行实验研究。无菌小鼠的骨免疫学研究表明,肠道微生物群的免疫调节作用可调控生理性骨骼发育,突出表明抗生素对肠道微生物群的干扰可能会破坏正常的骨免疫学过程。我们研究了抗生素对肠道微生物群的破坏对青春期后骨骼发育中骨免疫反应的影响。将性匹配的 C57BL/6T 小鼠从 6 至 12 周龄开始接受广谱抗生素或载体对照处理。抗生素对肠道细菌组成和骨骼形态的改变具有性别依赖性。抗生素不影响成骨细胞生成或软骨内骨形成,但显著增强了破骨细胞生成。骨髓中 Tnf 或 Ccl3 的表达不变,而血清中肿瘤坏死因子-α和趋化因子(C-C 基序)配体 3 升高表明抗生素的促破骨细胞作用是由全身性炎症增加驱动的。抗生素在肠系膜淋巴结和脾脏中的适应性和固有免疫细胞引起的广泛变化表明,肠道微生物群的干扰导致局部肠道和全身循环引流的次级淋巴组织中出现生态失调的超免疫反应状态。抗生素上调了骨髓中髓源性抑制细胞,这些细胞是在病理生理炎症条件下具有免疫抑制特性的未成熟髓样祖细胞。髓源性抑制细胞介导的免疫抑制可能具有抗原特异性。因此,抗生素诱导的骨髓中主要组织相容性复合体 II 抗原呈递基因的广泛抑制表明抗生素对肠道微生物群的干扰破坏了关键的骨免疫交叉对话。