Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dong'an Road, 200032, Shanghai, China.
Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, 200092, Shanghai, China.
Eur Radiol. 2021 Aug;31(8):6125-6135. doi: 10.1007/s00330-020-07678-9. Epub 2021 Jan 23.
This study aims to develop a machine learning model for prediction of malignancy in T2 hyperintense mesenchymal uterine tumors based on T2-weighted image (T2WI) features and clinical information.
This retrospective study included 134 patients with T2 hyperintense uterine mesenchymal tumors (104 patients in training cohort and 30 in testing cohort). A total of 960 radiomics features were initially computed and extracted from each 3D segmented tumor depicting on T2WI. The support vector machine (SVM) classifier was applied to build computer-aided diagnosis (CAD) models by using selected clinical and radiomics features, respectively. Finally, an observer study was conducted by comparing with two radiologists to evaluate the diagnostic performance. The area under the receiver operating characteristic (ROC) curve (AUC) was computed to assess the performance of each model.
Comparing with the T2WI-based radiomics model (AUC: 0.76 ± 0.09) and the clinical model (AUC: 0.79 ± 0.09), the combined model significantly improved the AUC value to 0.91 ± 0.05 (p < 0.05). The clinical-radiomics combined model yielded equivalent or higher performance than two radiologists (AUC: 0.78 vs. 0.91, p = 0.03; 0.90 vs.0.91, p = 0.13). There was a significant difference between the AUC values of two radiologists (p < 0.05).
It is feasible to predict malignancy risk of T2 hyperintense uterine mesenchymal tumors by combining clinical variables and T2WI-based radiomics features. Machine learning-based classification model may be useful to assist radiologists in decision-making.
• Radiomics approach has the potential to distinguish between benign and malignant mesenchymal uterine tumors. • T2WI-based radiomics analysis combined with clinical variables performed well in predicting malignancy risk of T2 hyperintense uterine mesenchymal tumors. • Machine learning-based classification model may be useful to assist radiologists in characterization of a T2 hyperintense uterine mesenchymal tumor.
本研究旨在基于 T2 加权图像(T2WI)特征和临床信息,建立用于预测 T2 高信号子宫间质性肿瘤恶性程度的机器学习模型。
本回顾性研究纳入了 134 例 T2 高信号子宫间质性肿瘤患者(训练队列 104 例,测试队列 30 例)。从每个 3D 分割的 T2WI 描绘的肿瘤中,共计算和提取了 960 个放射组学特征。分别使用选定的临床和放射组学特征,应用支持向量机(SVM)分类器构建计算机辅助诊断(CAD)模型。最后,通过与两位放射科医生进行观察者研究来评估诊断性能。计算受试者工作特征(ROC)曲线下面积(AUC)以评估每个模型的性能。
与 T2WI 基于放射组学模型(AUC:0.76±0.09)和临床模型(AUC:0.79±0.09)相比,联合模型显著提高 AUC 值至 0.91±0.05(p<0.05)。临床-放射组学联合模型的性能与两位放射科医生相当或更高(AUC:0.78 比 0.91,p=0.03;0.90 比 0.91,p=0.13)。两位放射科医生的 AUC 值之间存在显著差异(p<0.05)。
结合临床变量和 T2WI 基于放射组学特征,预测 T2 高信号子宫间质性肿瘤的恶性风险是可行的。基于机器学习的分类模型可能有助于放射科医生进行决策。
放射组学方法具有区分良性和恶性子宫间质性肿瘤的潜力。
T2WI 基于放射组学分析结合临床变量可准确预测 T2 高信号子宫间质性肿瘤的恶性风险。
基于机器学习的分类模型可能有助于放射科医生对 T2 高信号子宫间质性肿瘤进行特征描述。