Trullo Roger, Petitjean Caroline, Dubray Bernard, Ruan Su
Normandie University, Institut National des Sciences Appliquées Rouen, LITIS, Rouen, France.
Centre Henri Becquerel Normandie Rouen, Rouen, France.
J Med Imaging (Bellingham). 2019 Jan;6(1):014001. doi: 10.1117/1.JMI.6.1.014001. Epub 2019 Jan 10.
Segmentation of organs at risk (OAR) in computed tomography (CT) is of vital importance in radiotherapy treatment. This task is time consuming and for some organs, it is very challenging due to low-intensity contrast in CT. We propose a framework to perform the automatic segmentation of multiple OAR: esophagus, heart, trachea, and aorta. Different from previous works using deep learning techniques, we make use of global localization information, based on an original distance map that yields not only the localization of each organ, but also the spatial relationship between them. Instead of segmenting directly the organs, we first generate the localization map by minimizing a reconstruction error within an adversarial framework. This map that includes localization information of all organs is then used to guide the segmentation task in a fully convolutional setting. Experimental results show encouraging performance on CT scans of 60 patients totaling 11,084 slices in comparison with other state-of-the-art methods.
在放射治疗中,对计算机断层扫描(CT)图像中的危及器官(OAR)进行分割至关重要。这项任务耗时且对于某些器官而言,由于CT中对比度较低,分割极具挑战性。我们提出了一个框架来对多个危及器官进行自动分割,这些器官包括:食管、心脏、气管和主动脉。与以往使用深度学习技术的工作不同,我们利用基于原始距离图的全局定位信息,该距离图不仅能给出每个器官的定位,还能给出它们之间的空间关系。我们不是直接对器官进行分割,而是首先在对抗框架内通过最小化重建误差来生成定位图。然后,这个包含所有器官定位信息的图被用于在全卷积设置中指导分割任务。与其他现有最先进方法相比,实验结果表明,在对60名患者的CT扫描(共11084层切片)上,该方法具有令人鼓舞的性能。