Suppr超能文献

提高基于深度卷积神经网络的胸部 OAR 分割的准确性和鲁棒性。

Improving accuracy and robustness of deep convolutional neural network based thoracic OAR segmentation.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, United States of America. Carina Medical LLC, 145 Graham Ave, A168, Lexington, KY 40536, United States of America.

出版信息

Phys Med Biol. 2020 Mar 31;65(7):07NT01. doi: 10.1088/1361-6560/ab7877.

Abstract

Deep convolutional neural network (DCNN) has shown great success in various medical image segmentation tasks, including organ-at-risk (OAR) segmentation from computed tomography (CT) images. However, most studies use the dataset from the same source(s) for training and testing so that the ability of a trained DCNN to generalize to a different dataset is not well studied, as well as the strategy to address the issue of performance drop on a different dataset. In this study we investigated the performance of a well-trained DCNN model from a public dataset for thoracic OAR segmentation on a local dataset and explored the systematic differences between the datasets. We observed that a subtle shift of organs inside patient body due to the abdominal compression technique during image acquisition caused significantly worse performance on the local dataset. Furthermore, we developed an optimal strategy via incorporating different numbers of new cases from the local institution and using transfer learning to improve the accuracy and robustness of the trained DCNN model. We found that by adding as few as 10 cases from the local institution, the performance can reach the same level as in the original dataset. With transfer learning, the training time can be significantly shortened with slightly worse performance for heart segmentation.

摘要

深度卷积神经网络(DCNN)在各种医学图像分割任务中表现出色,包括从计算机断层扫描(CT)图像中分割危及器官(OAR)。然而,大多数研究都是使用来自相同来源的数据集进行训练和测试,因此,训练好的 DCNN 对不同数据集的泛化能力以及解决不同数据集上性能下降的策略尚未得到充分研究。在本研究中,我们调查了来自公共数据集的训练良好的 DCNN 模型在本地数据集上进行胸部 OAR 分割的性能,并探索了数据集之间的系统差异。我们观察到,由于图像采集过程中的腹部压缩技术,患者体内器官的细微移位导致在本地数据集上的性能显著下降。此外,我们通过整合来自本地机构的不同数量的新病例,并使用迁移学习来提高训练好的 DCNN 模型的准确性和鲁棒性,开发了一种最佳策略。我们发现,通过添加来自本地机构的 10 个案例,性能可以达到与原始数据集相同的水平。使用迁移学习,虽然心脏分割的性能略有下降,但训练时间可以显著缩短。

相似文献

引用本文的文献

本文引用的文献

5
Advances in Auto-Segmentation.自动分割技术的进展
Semin Radiat Oncol. 2019 Jul;29(3):185-197. doi: 10.1016/j.semradonc.2019.02.001.
9
Multiorgan segmentation using distance-aware adversarial networks.使用距离感知对抗网络的多器官分割
J Med Imaging (Bellingham). 2019 Jan;6(1):014001. doi: 10.1117/1.JMI.6.1.014001. Epub 2019 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验