Suppr超能文献

使用应答者驱动抽样在超多样化社区招募一般健康调查参与者的可行性。

Feasibility of using respondent-driven sampling to recruit participants in superdiverse neighbourhoods for a general health survey.

机构信息

Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany.

出版信息

Int J Public Health. 2019 Apr;64(3):451-459. doi: 10.1007/s00038-018-1191-6. Epub 2019 Jan 20.

Abstract

OBJECTIVES

Respondent-driven sampling (RDS), a modified chain-referral system, has been proposed as a strategy for reaching 'hidden' populations. We applied RDS to assess its feasibility to recruit 'hard-to-reach' populations such as migrants and the unemployed in a general health survey and compared it to register-based sampling (RBS).

METHODS

RDS was applied parallel to standard population RBS in two superdiverse neighbourhoods in Bremen, Germany. Prevalences of sample characteristics of interest were estimated in RDS Analyst using the successive sampling estimator. These were then compared between the samples.

RESULTS

Only 115 persons were recruited via RDS compared to 779 via RBS. The prevalence of (1) migrant background, (2) unemployment and (3) poverty risk was significantly higher in the RDS than in the RBS sample. The respective estimates were (1) 51.6 versus 32.5% (95% CI 40.4-62.7), (2) 18.1 versus 7.5% (95% CI 8.4-27.9) and (3) 55.0 versus 30.4% (95% CI 41.3-68.7).

CONCLUSIONS

Although recruitment was difficult and the number of participants was small, RDS proved to be a feasible method for reaching migrants and other disadvantaged persons in our study.

摘要

目的

受访者驱动抽样(RDS)是一种改良的链式 referral 系统,被提议作为一种针对“隐藏”人群的策略。我们应用 RDS 评估其在一项综合健康调查中招募“难以接触”人群(如移民和失业者)的可行性,并将其与基于登记的抽样(RBS)进行比较。

方法

RDS 与德国不来梅两个超级多样化社区的标准人群 RBS 同时应用。使用连续抽样估计器,在 RDS Analyst 中估计了 RDS 样本中感兴趣的样本特征的流行率。然后在两个样本之间进行比较。

结果

通过 RDS 仅招募了 115 人,而通过 RBS 招募了 779 人。在 RDS 样本中,(1)移民背景、(2)失业和(3)贫困风险的流行率明显高于 RBS 样本。相应的估计值分别为(1)51.6%比 32.5%(95%CI 40.4-62.7),(2)18.1%比 7.5%(95%CI 8.4-27.9)和(3)55.0%比 30.4%(95%CI 41.3-68.7)。

结论

尽管招募困难且参与者人数较少,但 RDS 证明是一种在我们的研究中招募移民和其他弱势群体的可行方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验