Suppr超能文献

一种新的程序,无需人工评估即可自动对一些面部皮肤结构特征进行分级。与专家使用皮肤老化参考图谱进行的评估相比较。

A new procedure, free from human assessment that automatically grades some facial skin structural signs. Comparison with assessments by experts, using referential atlases of skin ageing.

作者信息

Jiang Ruowei, Kezele Irina, Levinshtein Alex, Flament Frederic, Zhang Jingyi, Elmoznino Eric, Ma Junwei, Ma He, Coquide Jerome, Arcin Vincent, Omoyuri Esohe, Aarabi Parham

机构信息

ModiFace - A L'Oréal Group Company, Toronto, Canada.

L'Oréal Research and Innovation, Clichy, France.

出版信息

Int J Cosmet Sci. 2019 Feb;41(1):67-78. doi: 10.1111/ics.12512.

Abstract

OBJECTIVE

To develop an automatic system that grades the severity of facial signs through 'selfies' pictures taken by women of different ages and ethnics.

METHODS

1140 women from three ethnics (African-American, Asian, Caucasian), of different ages (18-80 years old), took 'selfies' by high resolution smartphones cameras under different conditions of lighting or facial expressions. A dedicated software, was developed, based on a Convolutional Neural Network (CNN) that integrates training data from referential Skin Aging Atlases. The latter allows to an immediate quantification of the severity of nine facial signs according to the ethnicity declared by the subject. These automatic grading were confronted to those assessed by 12 trained experts and dermatologists either on 'selfies' pictures or in live conditions on a smaller cohort of women.

RESULTS

The system appears weakly influenced by lighting conditions or facial expressions (coefficients of variations ranging 10-13% for most signs) and leads to global agreements with experts' assessments, even showing a better reproducibility on some facial signs.

CONCLUSION

This automatic scoring system, still in development, seems offering a new quantitative approach in the quantified description of facial signs, independent from human vision, in many applications, being individual, cosmetic oriented or dermatological with regard to the follow-up of medical anti-ageing corrective strategies.

摘要

目的

开发一种自动系统,通过不同年龄和种族女性拍摄的“自拍”照片对面部体征的严重程度进行分级。

方法

1140名来自三个种族(非裔美国人、亚洲人、白种人)、不同年龄(18 - 80岁)的女性,在不同光照条件或面部表情下,使用高分辨率智能手机摄像头拍摄“自拍”。基于卷积神经网络(CNN)开发了一款专用软件,该网络整合了来自参考皮肤老化图谱的训练数据。后者能够根据受试者申报的种族,立即对九种面部体征的严重程度进行量化。将这些自动分级结果与12名训练有素的专家和皮肤科医生在“自拍”照片上或在一小群女性的实际情况下评估的结果进行对比。

结果

该系统似乎受光照条件或面部表情的影响较小(大多数体征的变异系数在10 - 13%之间),并与专家评估结果达成总体一致,甚至在某些面部体征上显示出更好的可重复性。

结论

这种仍在开发中的自动评分系统,似乎在许多应用中,无论是针对个体、美容导向还是皮肤科领域中医疗抗老化矫正策略的随访,都能在不依赖人类视觉的情况下,对面部体征的量化描述提供一种新的定量方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验