文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习对活体线场共聚焦光学相干断层扫描图像的真皮基质进行质量评估。

Utilizing deep learning for dermal matrix quality assessment on in vivo line-field confocal optical coherence tomography images.

机构信息

R&D Department, SILAB, Brive-la-Gaillarde, France.

出版信息

Skin Res Technol. 2023 Jan;29(1):e13221. doi: 10.1111/srt.13221. Epub 2022 Nov 10.


DOI:10.1111/srt.13221
PMID:36366860
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9838780/
Abstract

BACKGROUND: Line-field confocal optical coherence tomography (LC-OCT) is an imaging technique providing non-invasive "optical biopsies" with an isotropic spatial resolution of ∼1  μm and deep penetration until the dermis. Analysis of obtained images is classically performed by experts, thus requiring long and fastidious training and giving operator-dependent results. In this study, the objective was to develop a new automated method to score the quality of the dermal matrix precisely, quickly, and directly from in vivo LC-OCT images. Once validated, this new automated method was applied to assess photo-aging-related changes in the quality of the dermal matrix. MATERIALS AND METHODS: LC-OCT measurements were conducted on the face of 57 healthy Caucasian volunteers. The quality of the dermal matrix was scored by experts trained to evaluate the fibers' state according to four grades. In parallel, these images were used to develop the deep learning model by adapting a MobileNetv3-Small architecture. Once validated, this model was applied to the study of dermal matrix changes on a panel of 36 healthy Caucasian females, divided into three groups according to their age and photo-exposition. RESULTS: The deep learning model was trained and tested on a set of 15 993 images. Calculated on the test data set, the accuracy score was 0.83. As expected, when applied to different volunteer groups, the model shows greater and deeper alteration of the dermal matrix for old and photoexposed subjects. CONCLUSIONS: In conclusion, we have developed a new method that automatically scores the quality of the dermal matrix on in vivo LC-OCT images. This accurate model could be used for further investigations, both in the dermatological and cosmetic fields.

摘要

背景:线场共聚焦光学相干断层扫描(LC-OCT)是一种成像技术,提供具有约 1μm 各向同性空间分辨率和深层穿透至真皮的非侵入性“光学活检”。获得的图像的分析通常由专家进行,因此需要长期而繁琐的培训,并产生依赖于操作人员的结果。在这项研究中,目的是开发一种新的自动化方法,从体内 LC-OCT 图像中精确、快速和直接地对真皮基质的质量进行评分。一旦验证,这种新的自动化方法就应用于评估与光老化相关的真皮基质质量变化。

材料和方法:在 57 名健康白种人志愿者的面部进行 LC-OCT 测量。专家根据四个等级对真皮基质的质量进行评分。同时,这些图像被用于开发深度学习模型,通过适应 MobileNetv3-Small 架构来实现。一旦验证,该模型就应用于 36 名健康白种女性的真皮基质变化研究,根据年龄和光暴露将其分为三组。

结果:深度学习模型在一组 15993 张图像上进行了训练和测试。在测试数据集上计算的准确率得分为 0.83。正如预期的那样,当应用于不同的志愿者组时,该模型显示出老年和光暴露受试者真皮基质的更大和更深的改变。

结论:总之,我们开发了一种新的方法,可自动对体内 LC-OCT 图像上的真皮基质质量进行评分。这种准确的模型可用于皮肤科和美容领域的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4b/9838780/eac9d41b6e01/SRT-29-e13221-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4b/9838780/eba2cbaeeef9/SRT-29-e13221-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4b/9838780/0045e4249a99/SRT-29-e13221-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4b/9838780/eac9d41b6e01/SRT-29-e13221-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4b/9838780/eba2cbaeeef9/SRT-29-e13221-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4b/9838780/0045e4249a99/SRT-29-e13221-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb4b/9838780/eac9d41b6e01/SRT-29-e13221-g002.jpg

相似文献

[1]
Utilizing deep learning for dermal matrix quality assessment on in vivo line-field confocal optical coherence tomography images.

Skin Res Technol. 2023-1

[2]
Comparison of line-field confocal optical coherence tomography images with histological sections: Validation of a new method for in vivo and non-invasive quantification of superficial dermis thickness.

Skin Res Technol. 2020-5

[3]
Evaluating facial dermis aging in healthy Caucasian females with LC-OCT and deep learning.

Sci Rep. 2024-10-15

[4]
In vivo characterization of healthy human skin with a novel, non-invasive imaging technique: line-field confocal optical coherence tomography.

J Eur Acad Dermatol Venereol. 2020-12

[5]
Line-field confocal optical coherence tomography (LC-OCT): principles and practical use.

Ital J Dermatol Venerol. 2023-6

[6]
Mirau-based line-field confocal optical coherence tomography for three-dimensional high-resolution skin imaging.

J Biomed Opt. 2022-8

[7]
Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors.

J Biomed Opt. 2018-10

[8]
Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning.

Biomed Phys Eng Express. 2024-5-21

[9]
Morphological evaluation of melanocytic lesions with three-dimensional line-field confocal optical coherence tomography: correlation with histopathology and reflectance confocal microscopy. A pilot study.

Clin Exp Dermatol. 2022-12

[10]
In vivo assessment of early effects of diamond-tipped microdermabrasion through the lens of line-field confocal optical coherence tomography.

J Cosmet Dermatol. 2024-8

引用本文的文献

[1]
Analysis of injured-skin SS-OCT images based on combined attention UNet.

PLoS One. 2025-7-11

[2]
Comparison of facial skin ageing in healthy Asian and Caucasian females quantified by in vivo line-field confocal optical coherence tomography 3D imaging.

Skin Res Technol. 2024-9

[3]
Line-Field Confocal Optical Coherence Tomography: A New Skin Imaging Technique Reproducing a "Virtual Biopsy" with Evolving Clinical Applications in Dermatology.

Diagnostics (Basel). 2024-8-21

[4]
Analyzing the effects of a chemical peel on post-inflammatory hyperpigmentation using line-field confocal optical coherence tomography.

Skin Res Technol. 2023-10

[5]
Line-field confocal optical coherence tomography: A new diagnostic method of lichen planopilaris.

Skin Res Technol. 2023-10

本文引用的文献

[1]
Line-field confocal optical coherence tomography for three-dimensional skin imaging.

Front Optoelectron. 2020-12

[2]
Age-Related Changes in the Fibroblastic Differon of the Dermis: Role in Skin Aging.

Int J Mol Sci. 2022-5-30

[3]
Deep learning-based image processing in optical microscopy.

Biophys Rev. 2022-4-6

[4]
A Systematic Review of Artificial Intelligence Applications Used for Inherited Retinal Disease Management.

Medicina (Kaunas). 2022-3-31

[5]
Dermoscopy in Primary Care.

Prim Care. 2022-3

[6]
Artificial Intelligence-Based Approaches to Reflectance Confocal Microscopy Image Analysis in Dermatology.

J Clin Med. 2022-1-14

[7]
Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning.

Sci Rep. 2022-1-10

[8]
Seeing through the Skin: Photoacoustic Tomography of Skin Vasculature and Beyond.

JID Innov. 2021-6-25

[9]
Boosting COVID-19 Image Classification Using MobileNetV3 and Aquila Optimizer Algorithm.

Entropy (Basel). 2021-10-22

[10]
Line-field confocal optical coherence tomography as a tool for three-dimensional in vivo quantification of healthy epidermis: A pilot study.

J Biophotonics. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索