Suppr超能文献

评估慢性病消费者移动健康应用有效参与度的分析指标库:范围综述。

A Library of Analytic Indicators to Evaluate Effective Engagement with Consumer mHealth Apps for Chronic Conditions: Scoping Review.

机构信息

Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

Centre for Global eHealth Innovation, Techna Institute, University Health Network, Toronto, ON, Canada.

出版信息

JMIR Mhealth Uhealth. 2019 Jan 18;7(1):e11941. doi: 10.2196/11941.

Abstract

BACKGROUND

There is mixed evidence to support current ambitions for mobile health (mHealth) apps to improve chronic health and well-being. One proposed explanation for this variable effect is that users do not engage with apps as intended. The application of analytics, defined as the use of data to generate new insights, is an emerging approach to study and interpret engagement with mHealth interventions.

OBJECTIVE

This study aimed to consolidate how analytic indicators of engagement have previously been applied across clinical and technological contexts, to inform how they might be optimally applied in future evaluations.

METHODS

We conducted a scoping review to catalog the range of analytic indicators being used in evaluations of consumer mHealth apps for chronic conditions. We categorized studies according to app structure and application of engagement data and calculated descriptive data for each category. Chi-square and Fisher exact tests of independence were applied to calculate differences between coded variables.

RESULTS

A total of 41 studies met our inclusion criteria. The average mHealth evaluation included for review was a two-group pretest-posttest randomized controlled trial of a hybrid-structured app for mental health self-management, had 103 participants, lasted 5 months, did not provide access to health care provider services, measured 3 analytic indicators of engagement, segmented users based on engagement data, applied engagement data for descriptive analyses, and did not report on attrition. Across the reviewed studies, engagement was measured using the following 7 analytic indicators: the number of measures recorded (76%, 31/41), the frequency of interactions logged (73%, 30/41), the number of features accessed (49%, 20/41), the number of log-ins or sessions logged (46%, 19/41), the number of modules or lessons started or completed (29%, 12/41), time spent engaging with the app (27%, 11/41), and the number or content of pages accessed (17%, 7/41). Engagement with unstructured apps was mostly measured by the number of features accessed (8/10, P=.04), and engagement with hybrid apps was mostly measured by the number of measures recorded (21/24, P=.03). A total of 24 studies presented, described, or summarized the data generated from applying analytic indicators to measure engagement. The remaining 17 studies used or planned to use these data to infer a relationship between engagement patterns and intended outcomes.

CONCLUSIONS

Although researchers measured on average 3 indicators in a single study, the majority reported findings descriptively and did not further investigate how engagement with an app contributed to its impact on health and well-being. Researchers are gaining nuanced insights into engagement but are not yet characterizing effective engagement for improved outcomes. Raising the standard of mHealth app efficacy through measuring analytic indicators of engagement may enable greater confidence in the causal impact of apps on improved chronic health and well-being.

摘要

背景

目前有一些混合证据支持移动健康(mHealth)应用程序改善慢性健康和幸福感的目标。这种可变效果的一个解释是,用户没有按照预期使用应用程序。分析的应用,定义为使用数据生成新的见解,是一种新兴的方法来研究和解释对 mHealth 干预措施的参与度。

目的

本研究旨在整合分析指标在临床和技术背景下的应用,以了解如何在未来的评估中优化这些应用。

方法

我们进行了范围综述,以列出评估慢性疾病消费者 mHealth 应用程序的分析指标的范围。我们根据应用程序结构和参与数据的应用对研究进行了分类,并为每个类别计算了描述性数据。应用卡方和 Fisher 精确检验来计算编码变量之间的差异。

结果

共有 41 项研究符合我们的纳入标准。综述中包括的平均 mHealth 评估是一项针对心理健康自我管理的混合结构应用程序的两组成组前后测试随机对照试验,参与者 103 人,持续 5 个月,不提供医疗服务,测量了 3 项参与度分析指标,根据参与度数据对用户进行了细分,应用参与度数据进行描述性分析,未报告流失率。在综述的研究中,使用以下 7 种分析指标来衡量参与度:记录的测量次数(76%,31/41)、记录的交互次数(73%,30/41)、访问的功能数量(49%,20/41)、登录或会话次数(46%,19/41)、开始或完成的模块或课程数量(29%,12/41)、使用应用程序的时间(27%,11/41)和访问的页面数量或内容(17%,7/41)。非结构化应用程序的参与度主要通过访问的功能数量来衡量(8/10,P=.04),而混合应用程序的参与度主要通过记录的测量次数来衡量(21/24,P=.03)。共有 24 项研究提出、描述或总结了应用分析指标衡量参与度所产生的数据。其余 17 项研究使用或计划使用这些数据来推断参与模式与预期结果之间的关系。

结论

尽管研究人员在单个研究中平均测量了 3 个指标,但大多数研究都是描述性地报告结果,而没有进一步研究应用程序的参与度如何对其对健康和幸福感的影响做出贡献。研究人员对参与度有了更细微的了解,但尚未确定有效参与度以提高效果。通过衡量参与度的分析指标来提高 mHealth 应用程序的功效标准,可以提高对应用程序改善慢性健康和幸福感的因果影响的信心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a16/6356188/f281d7336d90/mhealth_v7i1e11941_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验