Suppr超能文献

利用无人平台获取高分辨率图像,估算不同灌溉制度下油橄榄树的生物物理和几何参数。

High-resolution imagery acquired from an unmanned platform to estimate biophysical and geometrical parameters of olive trees under different irrigation regimes.

机构信息

Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Pisa, Italy.

Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain.

出版信息

PLoS One. 2019 Jan 22;14(1):e0210804. doi: 10.1371/journal.pone.0210804. eCollection 2019.

Abstract

The experiments were conducted in a fully-productive olive orchard (cv. Frantoio) at the experimental farm of University of Pisa at Venturina (Italy) in 2015 to assess the ability of an unmanned aerial vehicle (UAV) equipped with RGB-NIR cameras to estimate leaf area index (LAI), tree height, canopy diameter and canopy volume of olive trees that were either irrigated or rainfed. Irrigated trees received water 4-5 days a week (1348 m3 ha-1), whereas the rainfed ones received a single irrigation of 19 m3 ha-1 to relieve the extreme stress. The flight altitude was 70 m above ground level (AGL), except for one flight (50 m AGL). The Normalized Difference Vegetation Index (NDVI) was calculated by means of the map algebra technique. Canopy volume, canopy height and diameter were obtained from the digital surface model (DSM) obtained through automatic aerial triangulation, bundle block adjustment and camera calibration methods. The NDVI estimated on the day of the year (DOY) 130 was linearly correlated with both LAI and leaf chlorophyll measured on the same date (R2 = 0.78 and 0.80, respectively). The correlation between the on ground measured canopy volumes and the ones by the UAV-RGB camera techniques yielded an R2 of 0.71-0.86. The monthly canopy volume increment estimated from UAV surveys between (DOY) 130 and 244 was highly correlated with the daily water stress integral of rainfed trees (R2 = 0.99). The effect of water stress on the seasonal pattern of canopy growth was detected by these techniques in correspondence of the maximum level of stress experienced by the rainfed trees. The highest level of accuracy (RMSE = 0.16 m) in canopy height estimation was obtained when the flight altitude was 50 m AGL, yielding an R2 value of 0.87 and an almost 1:1 ratio of measured versus estimated canopy height.

摘要

2015 年,在比萨大学文图里纳(意大利)实验农场的一个完全生产性橄榄园中(品种为 Frantoio)进行了实验,以评估配备 RGB-NIR 相机的无人机 (UAV) 估算灌溉或自然降雨橄榄树的叶面积指数 (LAI)、树高、冠层直径和冠层体积的能力。灌溉树每周接受 4-5 天的灌溉(1348 m3 ha-1),而自然降雨的橄榄树仅接受一次 19 m3 ha-1 的灌溉以缓解极端胁迫。飞行高度离地 70 米(AGL),除了一次飞行(50 m AGL)。通过地图代数技术计算归一化差异植被指数 (NDVI)。通过自动航空三角测量、束块调整和相机校准方法获得数字表面模型 (DSM),从而获得冠层体积、冠层高度和直径。在当年 130 日(DOY)估算的 NDVI 与同一天测量的 LAI 和叶片叶绿素呈线性相关(分别为 R2 = 0.78 和 0.80)。通过地面测量的冠层体积与无人机 RGB 相机技术测量的冠层体积之间的相关性为 0.71-0.86。在(DOY)130 日至 244 日之间的 UAV 调查中估算的每月冠层体积增量与自然降雨树木的每日水分胁迫积分高度相关(R2 = 0.99)。这些技术检测到水分胁迫对树冠生长季节模式的影响,对应于自然降雨树木经历的最大胁迫水平。在飞行高度为 50 米 AGL 时,在估算树冠高度方面获得了最高的精度(RMSE = 0.16 m),R2 值为 0.87,并且实测与估计的树冠高度之比接近 1:1。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/964a/6342295/f89da2fa37d1/pone.0210804.g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验