Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.
Int J Mol Sci. 2019 Jan 21;20(2):440. doi: 10.3390/ijms20020440.
Integral membrane proteins of the divalent anion/Na⁺ symporter (DASS) family are conserved from bacteria to humans. DASS proteins typically mediate the coupled uptake of Na⁺ ions and dicarboxylate, tricarboxylate, or sulfate. Since the substrates for DASS include key intermediates and regulators of energy metabolism, alterations of DASS function profoundly affect fat storage, energy expenditure and life span. Furthermore, loss-of-function mutations in a human DASS have been associated with neonatal epileptic encephalopathy. More recently, human DASS has also been implicated in the development of liver cancers. Therefore, human DASS proteins are potentially promising pharmacological targets for battling obesity, diabetes, kidney stone, fatty liver, as well as other metabolic and neurological disorders. Despite its clinical relevance, the mechanism by which DASS proteins recognize and transport anionic substrates remains unclear. Recently, the crystal structures of a bacterial DASS and its humanized variant have been published. This article reviews the mechanistic implications of these structures and suggests future work to better understand how the function of DASS can be modulated for potential therapeutic benefit.
二价阴离子/Na⁺共转运蛋白(DASS)家族的整合膜蛋白在细菌到人类中是保守的。DASS 蛋白通常介导 Na⁺离子和二羧酸、三羧酸或硫酸盐的偶联摄取。由于 DASS 的底物包括能量代谢的关键中间产物和调节剂,因此 DASS 功能的改变会深刻影响脂肪储存、能量消耗和寿命。此外,人类 DASS 中的功能丧失突变与新生儿癫痫性脑病有关。最近,人类 DASS 也与肝癌的发展有关。因此,人类 DASS 蛋白是治疗肥胖症、糖尿病、肾结石、脂肪肝以及其他代谢和神经疾病的潜在有前途的药物靶点。尽管具有临床相关性,但 DASS 蛋白识别和转运阴离子底物的机制仍不清楚。最近,细菌 DASS 及其人源化变体的晶体结构已被公布。本文综述了这些结构的机制意义,并提出了未来的工作,以更好地理解如何调节 DASS 的功能以获得潜在的治疗益处。