Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A.
Biochem J. 2021 Feb 12;478(3):463-486. doi: 10.1042/BCJ20200877.
NaCT/SLC13A5 is a Na+-coupled transporter for citrate in hepatocytes, neurons, and testes. It is also called mINDY (mammalian ortholog of 'I'm Not Dead Yet' in Drosophila). Deletion of Slc13a5 in mice leads to an advantageous phenotype, protecting against diet-induced obesity, and diabetes. In contrast, loss-of-function mutations in SLC13A5 in humans cause a severe disease, EIEE25/DEE25 (early infantile epileptic encephalopathy-25/developmental epileptic encephalopathy-25). The difference between mice and humans in the consequences of the transporter deficiency is intriguing but probably explainable by the species-specific differences in the functional features of the transporter. Mouse Slc13a5 is a low-capacity transporter, whereas human SLC13A5 is a high-capacity transporter, thus leading to quantitative differences in citrate entry into cells via the transporter. These findings raise doubts as to the utility of mouse models to evaluate NaCT biology in humans. NaCT-mediated citrate entry in the liver impacts fatty acid and cholesterol synthesis, fatty acid oxidation, glycolysis, and gluconeogenesis; in neurons, this process is essential for the synthesis of the neurotransmitters glutamate, GABA, and acetylcholine. Thus, SLC13A5 deficiency protects against obesity and diabetes based on what the transporter does in hepatocytes, but leads to severe brain deficits based on what the transporter does in neurons. These beneficial versus detrimental effects of SLC13A5 deficiency are separable only by the blood-brain barrier. Can we harness the beneficial effects of SLC13A5 deficiency without the detrimental effects? In theory, this should be feasible with selective inhibitors of NaCT, which work only in the liver and do not get across the blood-brain barrier.
NaCT/SLC13A5 是肝细胞、神经元和睾丸中的柠檬酸 Na+共转运体,也称为 mINDY(果蝇中“我还没死”的哺乳动物同源物)。Slc13a5 在小鼠中的缺失导致有利表型,可预防饮食诱导的肥胖和糖尿病。相比之下,人类 SLC13A5 中的功能丧失突变导致一种严重的疾病,EIEE25/DEE25(早发性婴儿癫痫性脑病-25/发育性癫痫性脑病-25)。转运体缺乏在小鼠和人类中的后果之间的差异很有趣,但可能可以通过转运体的功能特征的物种特异性差异来解释。小鼠 Slc13a5 是一种低容量转运体,而人类 SLC13A5 是一种高容量转运体,因此导致通过转运体进入细胞的柠檬酸进入量存在定量差异。这些发现使人对使用小鼠模型来评估人类 NaCT 生物学的效用产生了怀疑。NaCT 介导的柠檬酸进入肝脏会影响脂肪酸和胆固醇合成、脂肪酸氧化、糖酵解和糖异生;在神经元中,这个过程对于谷氨酸、GABA 和乙酰胆碱等神经递质的合成至关重要。因此,SLC13A5 的缺乏之所以能预防肥胖和糖尿病,是基于其在肝细胞中的作用,但导致严重的大脑缺陷,是基于其在神经元中的作用。只有通过血脑屏障,才能将 SLC13A5 缺乏的有益作用与有害作用分开。我们能否利用 SLC13A5 缺乏的有益作用而避免其有害作用?从理论上讲,这应该可以通过选择性的 NaCT 抑制剂来实现,这些抑制剂仅在肝脏中起作用,不能穿过血脑屏障。