Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden.
Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala, S-751 23, Sweden.
Nat Commun. 2019 Jan 22;10(1):373. doi: 10.1038/s41467-018-08114-9.
The most frequently recurring cancer-associated DNA polymerase ε (Pol ε) mutation is a P286R substitution in the exonuclease domain. While originally proposed to increase genome instability by disrupting exonucleolytic proofreading, the P286R variant was later found to be significantly more pathogenic than Pol ε proofreading deficiency per se. The mechanisms underlying its stronger impact remained unclear. Here we report the crystal structure of the yeast orthologue, Pol ε-P301R, complexed with DNA and an incoming dNTP. Structural changes in the protein are confined to the exonuclease domain, with R301 pointing towards the exonuclease site. Molecular dynamics simulations suggest that R301 interferes with DNA binding to the exonuclease site, an outcome not observed with the exonuclease-inactive Pol ε-D290A,E292A variant lacking the catalytic residues. These results reveal a distinct mechanism of exonuclease inactivation by the P301R substitution and a likely basis for its dramatically higher mutagenic and tumorigenic effects.
最常发生的与癌症相关的 DNA 聚合酶 ε(Pol ε)突变是外切酶结构域中的 P286R 取代。虽然最初被提议通过破坏外切核酸酶校对来增加基因组不稳定性,但后来发现 P286R 变体本身比 Pol ε 校对缺陷具有更高的致病性。其更强影响的机制尚不清楚。在这里,我们报告了酵母同源物 Pol ε-P301R 与 DNA 和进入的 dNTP 形成的复合物的晶体结构。蛋白质中的结构变化仅限于外切酶结构域,其中 R301 指向外切酶位点。分子动力学模拟表明,R301 干扰了 DNA 与外切酶位点的结合,而在外切酶失活的 Pol ε-D290A,E292A 变体中未观察到这种情况,该变体缺乏催化残基。这些结果揭示了 P301R 取代导致外切酶失活的独特机制,以及其具有更高突变和致瘤作用的可能基础。