Institute of Information Systems, Leuphana University, Lüneburg, Germany.
Big Data. 2019 Mar;7(1):71-82. doi: 10.1089/big.2018.0054. Epub 2019 Jan 23.
We investigate how to learn functions that rate game situations on a soccer pitch according to their potential to lead to successful attacks. We follow a purely data-driven approach using techniques from deep reinforcement learning to valuate multiplayer positionings based on positional data. Empirically, the predicted scores highly correlate with dangerousness of actual situations and show that rating of player positioning without expert knowledge is possible.
我们研究如何根据潜在的成功攻击机会来学习对足球场上的比赛情况进行评分的函数。我们采用了一种纯粹的数据驱动方法,使用来自深度强化学习的技术根据位置数据来评估多人的位置。从经验上看,预测的分数与实际情况的危险程度高度相关,这表明无需专家知识即可对球员位置进行评分是可行的。