Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PT Manchester, United Kingdom
Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PT Manchester, United Kingdom.
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):E9288-E9297. doi: 10.1073/pnas.1801759115. Epub 2018 Sep 20.
The formation of uniaxial fibrous tissues with defined viscoelastic properties implies the existence of an orchestrated mechanical interaction between the cytoskeleton and the extracellular matrix. This study addresses the nature of this interaction. The hypothesis is that this mechanical interplay underpins the mechanical development of the tissue. In embryonic tendon tissue, an early event in the development of a mechanically robust tissue is the interaction of the pointed tips of extracellular collagen fibrils with the fibroblast plasma membrane to form stable interface structures (fibripositors). Here, we used a fibroblast-generated tissue that is structurally and mechanically matched to embryonic tendon to demonstrate homeostasis of cell-derived and external strain-derived tension over repeated cycles of strain and relaxation. A cell-derived oscillatory tension component is evident in this matrix construct. This oscillatory tension involves synchronization of individual cell forces across the construct and is induced in each strain cycle by transient relaxation and transient tensioning of the tissue. The cell-derived tension along with the oscillatory component is absent in the presence of blebbistatin, which disrupts actinomyosin force generation of the cell. The time period of this oscillation (60-90 s) is well-defined in each tissue sample and matches a primary viscoelastic relaxation time. We hypothesize that this mechanical oscillation of fibroblasts with plasma membrane anchored collagen fibrils is a key factor in mechanical sensing and feedback regulation in the formation of tensile tissues.
具有确定黏弹性特性的单轴纤维组织的形成意味着细胞骨架和细胞外基质之间存在协调的机械相互作用。本研究探讨了这种相互作用的本质。假设这种机械相互作用是组织力学发育的基础。在胚胎肌腱组织中,机械坚固组织发育的早期事件是细胞外胶原原纤维的尖端与成纤维细胞膜之间的相互作用,以形成稳定的界面结构(fibripositors)。在这里,我们使用了一种由成纤维细胞产生的组织,其结构和力学性能与胚胎肌腱相匹配,以证明在应变和松弛的反复循环中,细胞来源和外部应变来源的张力的自稳态。在这个基质结构中可以明显看到细胞产生的振荡张力成分。这种振荡张力涉及到整个构建体中单个细胞力的同步,并且在每个应变循环中通过组织的短暂松弛和短暂拉紧来诱导。在存在 blebbistatin 的情况下,细胞产生的张力以及振荡成分都不存在,blebbistatin 会破坏细胞的肌动球蛋白力产生。这种振荡的时间周期(60-90 秒)在每个组织样本中都是明确的,与主要的黏弹性松弛时间相匹配。我们假设,带有锚定在质膜上的胶原原纤维的成纤维细胞的这种机械振荡是在拉伸组织形成过程中进行机械传感和反馈调节的关键因素。