National Metal and Materials Technology Center, Thailand Science Park, Pathumthani 12120, Thailand; Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3800, Australia.
School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
Mater Sci Eng C Mater Biol Appl. 2019 Apr;97:188-197. doi: 10.1016/j.msec.2018.12.034. Epub 2018 Dec 12.
The silicate glass 45S5 Bioglass® (BG) is a potential scaffold material for bone regeneration because of its excellent bioactivity, biocompatibility and ability to form a strong bond with bone tissues, via the formation of an apatite layer on its surface. The evaluation of in vitro bioactivity in physiological body fluids, whilst challenging, can offer some insights for developing the bone-bonding ability of these glasses in vivo. In this study, we investigated the influence of three different cell culture and tissue fluid-like solutions on the dissolution and calcium-phosphate (CaP) based re-precipitation behaviour at the glass-liquid interface. We also examined pre-treatment of BG with these biological solutions, and how its influence on bone-forming MG-63 osteoblastic cell proliferation, viability and adhesion. The biological solutions used in this comparative study were: commercial cell culture medium (DMEM), a DMEM solution without organic components (DML) and a simulated body fluid (SBF), incorporating TRIS-buffer. Incubation of BG in these solutions over 28 days resulted in differences in weight loss, solution pH and ion release, and the development of CaP-based surface layers. XRD and FT-IR analyses showed clear differences in the characteristics of the CaP-based coating layers formed by the different solutions. The interfacial reactivity between the glass and the solutions depended on the composition and properties of the solutions. The formation of the CaP layer occurred more rapidly in SBF due to the presence of TRIS-buffer, which also significantly accelerated glass dissolution, further reducing the BG mass in SBF. MG-63 osteoblasts proliferated and spread more rapidly across the surfaces of all pre-conditioned BG, compared to fresh BG. The experimental results of this work help clarify differences between in vitro bioactivity of BG observed in cell culture solutions and in vivo BG bioactivity.
硅酸盐水 45S5 Bioglass®(BG)是一种潜在的骨再生支架材料,因为它具有优异的生物活性、生物相容性和在其表面形成磷灰石层的能力,能够与骨组织形成强键。尽管在生理体液中评估体外生物活性具有挑战性,但可以为开发这些玻璃在体内的骨结合能力提供一些见解。在这项研究中,我们研究了三种不同的细胞培养和组织液样溶液对玻璃-液体界面处溶解和基于钙磷(CaP)的再沉淀行为的影响。我们还研究了 BG 用这些生物溶液进行预处理及其对成骨 MG-63 成骨细胞增殖、活力和黏附的影响。在这项比较研究中使用的生物溶液是:商业细胞培养液(DMEM)、不含有机成分的 DMEM 溶液(DML)和模拟体液(SBF),其中包含 TRIS 缓冲液。BG 在这些溶液中孵育 28 天后,在重量损失、溶液 pH 值和离子释放以及基于 CaP 的表面层的发展方面存在差异。XRD 和 FT-IR 分析表明,不同溶液形成的基于 CaP 的涂层特征存在明显差异。玻璃与溶液之间的界面反应性取决于溶液的组成和性质。由于 TRIS 缓冲液的存在,SBF 中 CaP 层的形成更快,这也显著加速了玻璃的溶解,进一步降低了 SBF 中 BG 的质量。与新鲜 BG 相比,所有预处理 BG 表面的 MG-63 成骨细胞增殖和扩散速度更快。这项工作的实验结果有助于澄清 BG 在细胞培养液中观察到的体外生物活性与体内 BG 生物活性之间的差异。