Lin Cho-Ying, Hsu Chia-Hsiu, Huang Yu-Zhang, Hsieh Shih-Ching, Chen Han-De, Huang Li, Huang Zhi-Quan, Chuang Feng-Chuan, Lin Deng-Sung
Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
Sci Rep. 2019 Jan 24;9(1):756. doi: 10.1038/s41598-018-37051-2.
Synchrotron radiation core-level photoemission spectroscopy, scanning tunneling microscopy (STM), and first-principles calculations have been utilized to explore the growth processes and the atomic structure of the resulting films during the two-step molecular beam epitaxy (MBE) of In and Bi on the Si(111) surface. Deposition of 1.0-ML Bi on the In/Si(111)-(4 × 1) surface at room temperature results in Bi-terminated BiIn-(4 × 3) structures, which are stable up to ~300 °C annealing. By contrast, deposition of In on the β-Bi/Si(111)-(√3 × √3) surface at room temperature results in three dimensional (3D) In islands. In both cases, annealing at 460 °C results in the same In-terminated InBi/Si(111)-(2 × 2) surface. Our DFT calculations confirm that the surface energy of In-terminated InBi/Si(111)-(2 × 2) system is lower than that of Bi-terminated BiIn/Si(111)-(2 × 2). These findings provide means for the control of the polarity of the MBE In-Bi atomically thick films.
同步辐射芯能级光电子能谱、扫描隧道显微镜(STM)和第一性原理计算已被用于探索在Si(111)表面上In和Bi的两步分子束外延(MBE)过程中所得薄膜的生长过程和原子结构。在室温下将1.0单层Bi沉积在In/Si(111)-(4×1)表面上会形成Bi端接的BiIn-(4×3)结构,该结构在高达约300°C的退火温度下仍保持稳定。相比之下,在室温下将In沉积在β-Bi/Si(111)-(√3×√3)表面上会形成三维(3D)In岛。在这两种情况下,在460°C退火都会得到相同的In端接的InBi/Si(111)-(2×2)表面。我们的密度泛函理论(DFT)计算证实,In端接的InBi/Si(111)-(2×2)体系的表面能低于Bi端接的BiIn/Si(111)-(2×2)的表面能。这些发现为控制MBE In-Bi原子厚薄膜极性提供了方法。