Suppr超能文献

基于核苷酸的卷积神经网络在 miRNA 前体分类中的应用

Nucleotide-level Convolutional Neural Networks for Pre-miRNA Classification.

机构信息

Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China.

出版信息

Sci Rep. 2019 Jan 24;9(1):628. doi: 10.1038/s41598-018-36946-4.

Abstract

Due to the biogenesis difference, miRNAs can be divided into canonical microRNAs and mirtrons. Compared to canonical microRNAs, mirtrons are less conserved and hard to be identified. Except stringent annotations based on experiments, many in silico computational methods have be developed to classify miRNAs. Although several machine learning classifiers delivered high classification performance, all the predictors depended heavily on the selection of calculated features. Here, we introduced nucleotide-level convolutional neural networks (CNNs) for pre-miRNAs classification. By using "one-hot" encoding and padding, pre-miRNAs were converted into matrixes with the same shape. The convolution and max-pooling operations can automatically extract features from pre-miRNAs sequences. Evaluation on test dataset showed that our models had a satisfactory performance. Our investigation showed that it was feasible to apply CNNs to extract features from biological sequences. Since there are many hyperparameters can be tuned in CNNs, we believe that the performance of nucleotide-level convolutional neural networks can be greatly improved in the future.

摘要

由于生物发生的差异,miRNAs 可分为经典 microRNAs 和 mirtrons。与经典 microRNAs 相比,mirtrons的保守性较低,难以识别。除了基于实验的严格注释外,还开发了许多计算方法来分类 miRNA。尽管一些机器学习分类器提供了较高的分类性能,但所有的预测器都严重依赖于计算特征的选择。在这里,我们引入了核苷酸级别的卷积神经网络(CNN)来进行 pre-miRNAs 分类。通过使用“one-hot”编码和填充,pre-miRNAs 被转换为具有相同形状的矩阵。卷积和最大池化操作可以自动从 pre-miRNAs 序列中提取特征。在测试数据集上的评估表明,我们的模型具有令人满意的性能。我们的研究表明,将 CNN 应用于从生物序列中提取特征是可行的。由于在 CNN 中可以调整许多超参数,我们相信核苷酸级别的卷积神经网络的性能在未来可以得到极大的提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验