Suppr超能文献

空间物理学和天体物理学中的弗拉索夫方法。

Vlasov methods in space physics and astrophysics.

作者信息

Palmroth Minna, Ganse Urs, Pfau-Kempf Yann, Battarbee Markus, Turc Lucile, Brito Thiago, Grandin Maxime, Hoilijoki Sanni, Sandroos Arto, von Alfthan Sebastian

机构信息

1Department of Physics, University of Helsinki, Helsinki, Finland.

2Finnish Meteorological Institute, Helsinki, Finland.

出版信息

Living Rev Comput Astrophys. 2018;4(1):1. doi: 10.1007/s41115-018-0003-2. Epub 2018 Aug 16.

Abstract

This paper reviews Vlasov-based numerical methods used to model plasma in space physics and astrophysics. Plasma consists of collectively behaving charged particles that form the major part of baryonic matter in the Universe. Many concepts ranging from our own planetary environment to the Solar system and beyond can be understood in terms of kinetic plasma physics, represented by the Vlasov equation. We introduce the physical basis for the Vlasov system, and then outline the associated numerical methods that are typically used. A particular application of the Vlasov system is Vlasiator, the world's first global hybrid-Vlasov simulation for the Earth's magnetic domain, the magnetosphere. We introduce the design strategies for Vlasiator and outline its numerical concepts ranging from solvers to coupling schemes. We review Vlasiator's parallelisation methods and introduce the used high-performance computing (HPC) techniques. A short review of verification, validation and physical results is included. The purpose of the paper is to present the Vlasov system and introduce an example implementation, and to illustrate that even with massive computational challenges, an accurate description of physics can be rewarding in itself and significantly advance our understanding. Upcoming supercomputing resources are making similar efforts feasible in other fields as well, making our design options relevant for others facing similar challenges.

摘要

本文回顾了用于模拟空间物理和天体物理中等离子体的基于弗拉索夫的数值方法。等离子体由集体行为的带电粒子组成,这些粒子构成了宇宙中重子物质的主要部分。从我们自己的行星环境到太阳系及更远的许多概念,都可以根据由弗拉索夫方程表示的动力学等离子体物理学来理解。我们介绍了弗拉索夫系统的物理基础,然后概述了通常使用的相关数值方法。弗拉索夫系统的一个特定应用是Vlasiator,它是世界上第一个用于地球磁层(磁层)的全球混合弗拉索夫模拟。我们介绍了Vlasiator的设计策略,并概述了其从求解器到耦合方案的数值概念。我们回顾了Vlasiator的并行化方法,并介绍了所使用的高性能计算(HPC)技术。还包括对验证、确认和物理结果的简要回顾。本文的目的是介绍弗拉索夫系统并引入一个示例实现,并说明即使面临巨大的计算挑战,对物理的准确描述本身也是有价值的,并且可以显著推进我们的理解。即将到来的超级计算资源也使其他领域的类似努力变得可行,使我们的设计选项与面临类似挑战的其他人相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ec5/6319499/9f8454142a4a/41115_2018_3_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验