Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States.
Department of Chemistry , Virginia State University , Petersburg , Virginia 23806 , United States.
J Phys Chem B. 2019 Mar 28;123(12):2623-2635. doi: 10.1021/acs.jpcb.8b10282. Epub 2019 Feb 12.
Degradation of multidomain substrate proteins (SPs) by AAA+ nanomachines takes place processively from the tagged terminal. Ring-shaped ATPase components, such as ClpY, apply repetitive mechanical forces to effect domain unfolding and translocation of polypeptide segments through a narrow central channel. We study these mechanisms through atomistic Langevin dynamics simulations of C-terminal-tagged SPs in allosteric ClpY cycles. We find that monomeric SPs are processed through single unfolding pathways and fast timescales, whereas multimeric SPs involve branched pathways and slower timescales. These distinct mechanisms are attributed to the slower rotational diffusion of the C-terminal domain in multidomain SPs that hinders access to the soft mechanical direction. In the geometry specific to laser optical tweezers experiments, involving a restrained SP N-terminal, a single unfolding pathway is found for both monomeric and tetrameric SPs as pulling is applied along the N-C direction. Non-native interactions modulate unfolding of unrestrained monomers by weakening the C-terminal interface but do not contribute significantly to unfolding of restrained SPs. On the basis of these results, we propose that the interplay of restricted SP dynamics and ATPase kinetics underlies partitioning of multidomain SPs into completely degraded products and undegraded fragments comprising folded domains.
多结构域底物蛋白 (SPs) 由 AAA+ 纳米机器从标记的末端进行逐步降解。环型 ATP 酶组件,如 ClpY,通过重复的机械力将多肽片段展开并通过狭窄的中央通道转移。我们通过在别构 ClpY 循环中对 C 末端标记的 SPs 进行原子 Langevin 动力学模拟来研究这些机制。我们发现单体 SPs 通过单一展开途径和快速时间尺度进行处理,而多聚体 SPs 则涉及分支途径和较慢的时间尺度。这些不同的机制归因于多结构域 SPs 中 C 末端结构域的旋转扩散较慢,这阻碍了其进入软机械方向。在涉及受约束 SP N 末端的激光光镊实验的特定几何形状中,当沿着 N-C 方向施加拉力时,发现单体和四聚体 SPs 都存在单一的展开途径。非天然相互作用通过削弱 C 末端界面来调节未约束单体的展开,但对受约束 SPs 的展开没有显著贡献。基于这些结果,我们提出 SP 动力学和 ATP 酶动力学的受限相互作用是将多结构域 SPs 分配为完全降解产物和包含折叠结构域的未降解片段的基础。