Suppr超能文献

利用 DHIS2 监测优先母婴指标的常规机构数据质量:来自尼日利亚贡贝州的案例研究。

Quality of routine facility data for monitoring priority maternal and newborn indicators in DHIS2: A case study from Gombe State, Nigeria.

机构信息

Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.

State Primary Health Care Development Agency, Gombe, Nigeria.

出版信息

PLoS One. 2019 Jan 25;14(1):e0211265. doi: 10.1371/journal.pone.0211265. eCollection 2019.

Abstract

INTRODUCTION

Routine health information systems are critical for monitoring service delivery. District Heath Information System, version 2 (DHIS2) is an open source software platform used in more than 60 countries, on which global initiatives increasingly rely for such monitoring. We used facility-reported data in DHIS2 for Gombe State, north-eastern Nigeria, to present a case study of data quality to monitor priority maternal and neonatal health indicators.

METHODS

For all health facilities in DHIS2 offering antenatal and postnatal care services (n = 497) and labor and delivery services (n = 486), we assessed the quality of data for July 2016-June 2017 according to the World Health Organization data quality review guidance. Using data from DHIS2 as well as external facility-level and population-level household surveys, we reviewed three data quality dimensions-completeness and timeliness, internal consistency, and external consistency-and considered the opportunities for improvement.

RESULTS

Of 14 priority maternal and neonatal health indicators that could be tracked through facility-based data, 12 were included in Gombe's DHIS2. During July 2016-June 2017, facility-reported data in DHIS2 were incomplete at least 40% of the time, under-reported 10%-60% of the events documented in facility registers, and showed inconsistencies over time, between related indicators, and with an external data source. The best quality data elements were those that aligned with Gombe's health program priorities, particularly older health programs, and those that reflected contact indicators rather than indicators related to the provision of commodities or content of care.

CONCLUSION

This case study from Gombe State, Nigeria, demonstrates the high potential for effective monitoring of maternal and neonatal health using DHIS2. However, coordinated action at multiple levels of the health system is needed to maximize reporting of existing data; rationalize data flow; routinize data quality review, feedback, and supervision; and ensure ongoing maintenance of DHIS2.

摘要

简介

常规健康信息系统对于监测服务提供至关重要。District Heath Information System,版本 2(DHIS2)是一个开源软件平台,在 60 多个国家使用,全球倡议越来越依赖该平台来进行此类监测。我们使用尼日利亚东北部贡贝州 DHIS2 中的机构报告数据,对数据质量进行了案例研究,以监测优先产妇和新生儿健康指标。

方法

对于所有在 DHIS2 中提供产前和产后护理服务的卫生机构(n=497)和分娩服务的卫生机构(n=486),我们根据世界卫生组织数据质量审查指南评估了 2016 年 7 月至 2017 年 6 月的数据质量。我们利用来自 DHIS2 的数据以及外部机构层面和人口层面的家庭调查数据,审查了数据的三个质量维度——完整性和及时性、内部一致性和外部一致性,并考虑了改进的机会。

结果

在可以通过基于机构的数据进行跟踪的 14 个优先产妇和新生儿健康指标中,12 个被纳入贡贝的 DHIS2。在 2016 年 7 月至 2017 年 6 月期间,DHIS2 中的机构报告数据至少有 40%的时间是不完整的,报告的事件比机构登记册中记录的事件少 10%-60%,并且随着时间的推移、相关指标之间以及与外部数据源之间存在不一致性。质量最好的数据元素是那些与贡贝州卫生计划重点一致的元素,特别是较旧的卫生计划,以及那些反映接触指标而不是与提供商品或护理内容相关的指标。

结论

来自尼日利亚贡贝州的这个案例研究表明,使用 DHIS2 有效监测产妇和新生儿健康的潜力很大。然而,需要在卫生系统的多个层面采取协调行动,以最大限度地报告现有数据;合理化数据流;使数据质量审查、反馈和监督常规化;并确保 DHIS2 的持续维护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66d7/6347394/1ed964671bd2/pone.0211265.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验