Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States.
J Am Chem Soc. 2019 Feb 27;141(8):3332-3346. doi: 10.1021/jacs.8b11297. Epub 2019 Feb 13.
Drugs are discovered through the biological screening of collections of compounds, followed by optimization toward functional end points. The properties of screening collections are often balanced between diversity, physicochemical favorability, intrinsic complexity, and synthetic tractability (Huggins, D. J.; et al. ACS Chem. Biol. 2011, 6, 208; DOI: 10.1021/cb100420r ). Whereas natural product (NP) collections excel in the first three attributes, NPs suffer a disadvantage on the last point. Academic total synthesis research has worked to solve this problem by devising syntheses of NP leads, diversifying late-stage intermediates, or derivatizing the NP target. This work has led to the discovery of reaction mechanisms, the invention of new methods, and the development of FDA-approved drugs. Few drugs, however, are themselves NPs; instead, NP analogues predominate. Here we highlight past examples of NP analogue development and successful NP-derived drugs. More recently, chemists have explored how NP analogues alter the retrosynthetic analysis of complex scaffolds, merging structural design and synthetic design. This strategy maintains the intrinsic complexity of the NP but can alter the physicochemical properties of the scaffold, like core instability that renders the NP a poor chemotype. Focused libraries based on these syntheses may exclude the NP but maintain the molecular properties that distinguish NP space from synthetic space (Stratton, C. F.; et al. Bioorg. Med. Chem. Lett. 2015, 25, 4802; DOI: 10.1016/j.bmcl.2015.07.014 ), properties that have statistical advantages in clinical progression (Luker, T.; et al. Bioorg. Med. Chem. Lett. 2011, 21, 5673, DOI: 10.1016/j.bmcl.2011.07.074 ; Ritchie, T. J.; Macdonald, S. J. F. Drug Discovery Today 2009, 14, 1011, DOI: 10.1016/j.drudis.2009.07.014 ). Research that expedites synthetic access to NP motifs can prevent homogeneity of chemical matter available for lead discovery. Easily accessed, focused libraries of NP scaffolds can fill empty but active gaps in screening sets and expand the molecular diversity of synthetic collections.
药物是通过对化合物库的生物筛选发现的,然后针对功能终点进行优化。筛选库的特性通常在多样性、物理化学适宜性、内在复杂性和合成可操作性之间平衡(Huggins,DJ;等人。ACS Chem。 Biol。2011,6,208;DOI:10.1021/cb100420r)。虽然天然产物(NP)库在前三个属性上表现出色,但 NP 在最后一点上处于劣势。学术全合成研究通过设计 NP 先导物的合成、多样化晚期中间体或衍生 NP 靶标来解决这个问题。这项工作导致了反应机制的发现、新方法的发明和 FDA 批准药物的开发。然而,很少有药物本身就是 NP;相反,NP 类似物占主导地位。在这里,我们重点介绍过去 NP 类似物开发和成功的 NP 衍生药物的例子。最近,化学家们还探索了 NP 类似物如何改变复杂支架的逆合成分析,将结构设计和合成设计融合在一起。这种策略保持了 NP 的内在复杂性,但可以改变支架的物理化学性质,例如核心不稳定性,使 NP 成为一种较差的化学类型。基于这些合成的有针对性的文库可能排除 NP,但保留区分 NP 空间和合成空间的分子特性(Stratton,CF;等人。生物有机与药物化学快报。2015 年,25,4802;DOI:10.1016/j.bmcl.2015.07.014),这些特性在临床进展中具有统计学优势(Luker,T;等人。生物有机与药物化学快报。2011 年,21,5673,DOI:10.1016/j.bmcl.2011.07.074;Ritchie,TJ;Macdonald,SJF。药物发现今日。2009 年,14,1011,DOI:10.1016/j.drudis.2009.07.014)。加快获得 NP 基序的合成方法的研究可以防止用于发现先导化合物的化学物质同质化。易于获得的、有针对性的 NP 支架文库可以填补筛选集中空但活跃的空白,并扩大合成库的分子多样性。